

MetaNet |0

Final project

2016

MetaNet

May 22, 2016

Written by: Guy Gelber, Matan Ramrazker

Powered by

MetaNet |1

Final project

Table of Contents

1. Introduction .. 2

2. Overall description .. 4

3. System features... 6

4. External interface requirements .. 8

5. Non-functional requirements .. 9

6. Key milestones .. 10

7. Key resource requirements ... 11

8. Other requirements ... 12

9. Glossary ... 13

10. Project proposal .. 15

11. Bot class diagram .. 18

12. Flask server class diagram .. 23

13. Sequence UML diagram ... 24

14. GUI……………… ... 26

15. Software test plan ... 31

16. Software test description and report ... 32

SRS – pages 2-14

Project proposal – pages 15

UML diagrams – pages 18-25

GUI presentation – pages 26-30

STP – page 31

STD&STR – pages 32-39

MetaNet |2

Final project

1. Introduction

1.1. Purpose

The purpose of this Software Requirements Specification (SRS) document is to provide a

detailed description of the functionalities of the MetaNet system. This document will

cover each of the system’s intended features; the document will also cover hardware,

software, and various other technical dependencies.

1.2. Document conventions

This document features some terminology which readers may be unfamiliar with. See

"Glossary" for a list of these terms and their definitions.

1.3. Intended audience and reading suggestions

This document is intended for all individuals participating in and/or the MetaNet Project.

Readers interested in a brief overview of the product should focus on the rest of Part 1

(Introduction), as well as Part 2 of the document (Overall Description), which provide a

brief overview of each aspect of the project as a whole. These readers may also be

interested in Part 6 (Key Milestones) which lays out a concise timeline of the project.

Readers who wish to explore the features of MetaNet in more detail should read on to Part

3 (System Features), which expands upon the information laid out in the main overview.

Part 4 (External Interface Requirements) offers further technical details, including

information on the user interface as well as the hardware and software platforms on

which the Botnet and server will run. Readers interested in the non-technical aspects

of the project should read Part 5, which covers performance, safety, security, and

various other attributes that will be important to users. Readers who have not found

the information they are looking for should check Part 8 (Other Requirements), which

includes any additional information which does not fit logically into the other sections.

MetaNet |3

Final project

1.4. Project scope

The MetaNet system is composed of three main components:

 Server-side application ("Server") – Its main purposes are to act as a "middleman"

between the Bot and the Client-side application, its main features includes, storing and

transferring relevant bot information, storing a list of all the bots that ever logged into

the server, maintaining a list of bots that are connected in real time ("Online").

 Bot – A program that runs on a remote computer, its main purposes are carrying out

tasks that are given from the Bot-master, sending updated information about the

computer and operating system that it runs on, sending every configured specified time

a "Sign of life" to the server.

 Client-side application ("Bot-master control panel") – A web application that run on the

user browser, its main purposes are to provide Graphical User Interface to give the bot-

master control of the bots features and actions, it will also list the online bots and the

offline bots.

MetaNet |4

Final project

2. Overall description

2.1. Product perspective

MetaNet system in one hand is a remote computer management, in the other hand is a

computer worm that replicates itself in order to spread to other computers.

While the Bot program is the main focus of the project, there are two more

components, the server-side which will be responsible for database and communication

services, and the client-side which will be used as Graphical User Interface.

The scope of the project encompasses Bot, server-side and client-side functionalities.

Below is a diagram of a Botnet system which illustrates the interactions between the bot

the server and the client-side application (C&C).

Figure 1. attacker sent to his Zombies(bot) to attack a victim.

2.2. Product features

The MetaNet system split into three main parts, client-side application, bot and server-

side application. The bot is responsible for scanning port in the local net and to run

exploits to distribute itself, furthermore it runs tasks that sent from the bot-master

through the server. The C&C server is responsible for sending messages and receiving

data from the bots and transferring them to the client-side application.

The client-side application's purpose is knowing in real time the status of the connected

bots and it will give the bot-master an easy way to manage all of the bots.

MetaNet |5

Final project

2.3. User classes and characteristics

The MetaNet system has two user classes

Bot-master – the controller of the all the slave bots

Bot (slave) – A remote computer that is controlled by the bot-master

2.4. Operating environment

 Server-side application – Computer that runs a Web server, SQLite Database and Ruby.

 Bot – Any Linux distributions that runs on 32 or 64bit Computer and have Internet

connection, the bot depends of number of system calls that are built-in typical 32 or

64bit Linux kernel.

 Client-side application – Browser that supports JavaScript and CSS.

2.5. Design and implementation constraints

 Bot is implemented specifically to the Linux platform, with possibility to add Windows

support in the future.

 Bot installs Ruby interpreter that used in order to integrate with Metasploit.

2.6. User documentation

The primary goal of MetaNet in not targeted for the simple user even though we try to

build a system that is easy to use for a typical user.

We will give a user documentation for the Bot-master admin interface with all the

possible tasks it can be send to the bots.

The documentations will include:

 Software Requirement Specification.

 Bot-master admin interface documentation.

2.7. Assumptions and dependencies

 Server-side application – No assumptions and dependencies excluding operating

environment.

 Client-side application - No assumptions and dependencies excluding operating

environment.

 Bot - No assumptions and dependencies excluding operating environment, when the

bot is being executed on a machine for the first time it installs in a hidden fashion all

the dependencies it needs: Ruby and Metasploit.

MetaNet |6

Final project

3. System features

MetaNet system features are divided into two main categories: core features and

additional features. The core features form the body of the application and include any

features that are essential to the functionality of the MetaNet system. These features

must be implemented in order to have a fully-functioning application. Additional

features, however, are not required for the app to function. They include any features

which, if needed to the software user, can be added to the application in order to

provide extra functionality.

Core features

 Bot installation

Upon executing the bot main executable file on a new Linux system, the bot will copy itself

to hidden directory in the filesystem and will install Ruby and Metasploit in the same

directory, the bot will add itself to the program start-up list.

 Bot uninstallation

Upon receiving uninstallation message from the server, the bot will remove itself

completely from the operating system.

 Bot update

Upon receiving update message from the server, the bot will stop itself and replace the

executable file of the bot with a new executable that is received from the server and

will run it.

 Bot system profiling

The bot will gather information about the operating system and the hardware it is installed

on, the bot will create "unique" identification string that will help the bot-master to

identify the bot and the machine it is running on.

 Bot "Sign of life"

The bot will send every configured specified time a message to the server, the purpose of

the message is to notify the server that the bot is live, connected to the internet and

can receive tasks to carry out.

 Bot port scanner

 The bot will scan the local network for ports that can be exploited.

 Bot Metasploit exploiting

The bot tries to exploit specific configured services on machines in the network that

has open ports of that service, if the exploiting of the service was successful the bot will

transfer the executable file and execute it in the exploited machine.

MetaNet |7

Final project

 Carrying out a task

Upon receiving a task message from the server, the bot will perform specific task from list

of supported tasks with parameters that are sent from the bot-master through the

server.

 On connect task

A Task that will be sent from the server to the bot immediately when bot connected to the

server.

Additional features (Tasks)

 Bandwidth test

Measure the maximum internet data throughput, download and upload speed of the

machine the bot runs on the result will be sent to the server.

 SOCKS5 Server

SOCKS5 is A protocol that routes network packets between a client and server through a

proxy server, the bot will create SOCKS5 server on a specified port.

 FTP Server

FTP is a standard network protocol used to transfer computer files from one host to

another host over a TCP-based network, such as the Internet, the bot will create FTP

server on a specified port and will serve the home directory of the executable's owner

user.

NOTE: Some of these features are not part of our core design and will only be added if

time permits, Additional tasks can be added, the code will be programmed in a

manner that adding additional tasks (features) will be easy.

MetaNet |8

Final project

4. External interface requirements

4.1. Software Interfaces

The bot is to be developed in C++ with Boost libraries to provide easy implementation for

Windows if wanted in the future, the program will run in low-level programming

language in order to perform well and to eliminate the need of any other software

dependencies that can increase the chances of the bot being detected.

4.2. Communications Interfaces

The server is web-based and created using Python(Flask) language. As mentioned before

The server's main purpose is to act as a "middleman" between the client-side

application (which used by a bot-master) and the bot.

The bot message the server on "Sign of life" message, the server sends to the bot right

after this message a list of tasks to carry if available, if there is a task the bot will carry

out the task with the parameters specified by the bot-master and once it finished the

task it will send the result back to the server.

The client-side application is connected to the server using WebSocket which will

accomplish real-time messaging and updates, when bot connects or when receiving a

task result.

The client-side application will maintain a list of online bots by checking if an online bot did

not send "Sign of life" message in configured period of time.

MetaNet |9

Final project

5. Non-functional requirements

5.1. Performance requirements

The Bot will take as little resources as possible in order to stay hidden from the user that

is using the compromised computer; the bot will consume above average network

usage when it is scanning the network for vulnerable machines, the bot will consume

high CPU usage only if it is asked by the bot-master (ex. by sending to the bot a task that

is CPU intensive).

The server performance should not be an issue because its purpose is to store bots

information and connect between the bot and the bot-master, In case of large amount

of bots, the server and client will be programmed to transfer between them small

amount of bot objects on each requests in order to prevent high network usage,

prevent low database performance on the server-side, and prevent high memory usage

on the client-side.

5.2. Safety requirements

MetaNet will not affect any data, software, server that is not related to the application

unless `asked to do so` using a task applied by the Bot-master.

5.3. Security requirements

 The password will be stored in the database and will be hashed using salted-MD5 hash.

 The application giving the user that compiled the application option to configure up to

three domain names in the bot configuration that will operate in a failover manner,

which means if one of the domain are resolved to bad IP or to a server that is not

functional, the bot will try to resolve the server IP address from the next configured

domain name, the bot will loop forever until it successfully connected to a server.

 The application assumes that only the bot-masters will have control over the three

domain names that configured in the configuration file.

 The application assumes that only authorized bot-master have a valid username and

password in order to login to the GUI command and control panel.

MetaNet |10

Final project

5.4. Software quality attributes

 Stability - The bot has to be stable, it must not crash unless hardware error occurred, if

software exception occurred the bot will send debugging information to the server.

 Maintenance - The software has to be written in a manner that it will be easy to

maintain and modify in the future, the main parts of the code will be commented for

that purpose.

 Testing – The software has to be testing friendly.

 Usability – GUI interface will be easy to handle and will navigate in the most expected

way with no delays. In that case the system program reacts accordingly and transverses

quickly between its states.

6. Key milestones

Milestone Deadline Comments

Server setup 15/11/15

Finalized interface
design

20/12/15

SRS document 3/1/16 We started designing
and writing the
program before SRS
submission

SDD document 20/1/16

implementation 1/2/16

Completion of the
project

30/5/16

MetaNet |11

Final project

7. Key resource requirements

Major project
activities

Skill/Expertise Required Internal resource External
resource

Issues or
Constraints

Design bot architecture System design experience,
Object oriented
programming

Matan and Guy have
general knowledge

in this field

Internet

Implement bot Object oriented
programming, design
patterns, networking,

operating system
knowledge, Metasploit

experience

Matan and Guy have
general knowledge

in this field

Boost libraries

documentation,
Internet,

Linux man
pages

Potential
schedule
conflicts

Design the
Interface

Design and usability
experience; knowledge in
AngularJS and jQuery and

CSS development

Matan and Guy have
general knowledge

in this field

Internet, Twitter
Bootstrap

tutorial

Implement the
interface

knowledge in AngularJS
and jQuery development,

Twitter bootstrap
knowledge, networking

knowledge

Matan and Guy have
general knowledge

in this field

Internet,
AngularJS

documentation

Create a Server
application

Database systems &
servers experience, Python

Flask knowledge

Matan and Guy have
general knowledge

in this field

Internet, Flask
documentation

No physical
server

Sync the Server
to the bot

Networking experience and
knowledge

Matan and Guy have
general knowledge

in this field

Internet

Sync the Server to the
Interface

Knowledge in Real-time
networking with socketIO

Matan and Guy have
general knowledge

in this field

Internet

MetaNet |12

Final project

8. Other requirements

A database on the server that holds information of the bot that ever connected to

the server. The database will be using SQLite. The following provides an

example of information that may be stored in the database:

 Bots table: ID, Bot app version, Operating system version, CPU model, memory, first
seen, last seen, uptime, last connected IP.

 Results table: Bot id, task name, result string, timestamp.

Processes to be done on the server include: pushing/pulling data, updating data.

MetaNet |13

Final project

9. Glossary

Bot-master

A bot-master is a person who operates the command and control of botnets for remote

process execution. The bot-master will often hide his/her identify via proxies, TOR and

or shells to disguise their IP Address from detection of investigators and law

enforcement.

"Sign of life"

A message that is send from a bot that its purpose of the message is to notify the server

that the bot is online.

MD5

The MD5 message-digest algorithm is a widely used cryptographic hash function producing

a 128-bit (16-byte) hash value, typically expressed in text format as a 32-digit

hexadecimal number. MD5 has been utilized in a wide variety of cryptographic

applications, and is also commonly used to verify data integrity.

Salt

random data that is used as an additional input to a one-way function that "hashes" a

password or passphrase, the primary function of salts is to defend against dictionary

attacks versus a list of password hashes and against pre-computed rainbow table

attacks.

Exploit

A piece of software, a chunk of data, or a sequence of commands that takes advantage of

a bug or vulnerability in order to cause unintended or unanticipated behavior to occur

on computer software, hardware, or something electronic (usually computerized). Such

behavior frequently includes things like gaining control of a computer system, allowing

privilege escalation, or a denial-of-service attack.

MetaNet |14

Final project

Boost (C++ libraries)

A set of libraries for the C++ programming language that provide support for tasks and

structures such as linear algebra, pseudorandom number generation, multithreading

image processing, regular expressions, and unit testing. It contains over eighty

individual libraries. The libraries are aimed at a wide range of C++ users and application

domains. They range from general-purpose libraries like the smart pointer library, to

operating system abstractions like Boost FileSystem, to libraries primarily aimed at

other library developers and advanced C++ users, like the template metaprogramming

(MPL) and domain-specific language (DSL) creation (Proto).

Metasploit

The Metasploit Project is a computer security project that provides information about

security vulnerabilities and aids in penetration testing and IDS signature development.

Its best-known sub-project is the open source Metasploit Framework, a tool for developing

and executing exploit code against a remote target machine. Other important sub-

projects include the Opcode Database, shellcode archive and related research.

MetaNet |15

Final project

10. Project proposal

MOTIVATION

We are designing an application that provides a platform to manage a number of

Internet-connected computers ("Bots") that are connected to a remote Command and

Control ("C&C") system that gathers all the information and data needed to identify

and control each one of those computers remotely.

PROBLEM STATEMENT

The problems we aim to alleviate with this app include the following:

 Remote controlling a computer system without being detected easily

 Spreading the bot within local networks

 Creating a friendly graphical user interface for bot-master C&C panel

The app we design solve these problems and several more. Consequently, we will include

the following functionalities each bot will have:

 Metasploit framework integration

 Automatic local network port scanner

 Carrying out a particular task specified by C&C server.

We will also add the following features (task/objective) the bot will able to perform,

which extend beyond the core functionalities:

 Bandwidth test

 SOCKS5 server

 FTP server

NOTE: Some of these features are not part of our core design and will only be added if

time permits.

MetaNet |16

Final project

OBJECTIVES

Beyond implementing the above features, there are a number of additional objectives we
must accomplish as a team. First and foremost, as a group we must familiarize
ourselves with the Linux Platform to make the best design, as this will lay the
groundwork for future.

Additional objectives include the following:

 Develop a timeline detailing each stage of development

 Create a fully-functional, bug-free application

 Ensure each member is up to speed and completing work on time

 Make sure that the will code be efficient as possible

 Create detailed software specifications

METHODOLOGY

A team of two people that strive to split their part of the project equally, but with
overlapping issues with mixing tasks that causes everyone on your team to understand
the smallest thing in the project.

Developing process:

1. Research

2. Design and architecture

3. Server-side, Client-side, Bot implementation.

4. Metasploit integration

5. Testing

In addition,

 In first we dedicated to get acclimated to the new development environment. We will do
this by finding and sharing resources (documentation, sample code, etc.).

Before beginning development, we will establish architecture designing and guidelines in
order to get main idea of the project.

Next, we will work up specifications, establish deadlines, define roles, and allocate tasks
to each. We plan on dividing up the development process into two central phases:

 Core development

 Additional features development

MetaNet |17

Final project

HISTORY

There are many applications on the cyber-crime black market which are similar to our

proposed app (examples include Zeus, Andromeda, Citadel, SpyEye). A majority of

these applications targets Windows operating system whereas our application runs on

Linux operating system. In addition, as far as we know none of them includes

Metasploit integration within them. Our application supports Metasploit framework,

which brings foundation to support newly (public) released or private exploits in the

future.

Famous botnets that are being sold on the black market

Zeus - Zeus, ZeuS, or Zbot is a Trojan horse malware package that runs on versions of

Microsoft Windows. While it can be used to carry out many malicious and criminal

tasks, it is often used to steal banking information by man-in-the-browser keystroke

logging and form grabbing.

Citadel - Citadel Trojan is malware created by a malicious code generating program.

Citadel was designed to steal personal information, including banking and financial

information, from its victims. The Citadel Trojan, based on the Zeus source code,

constructs a botnet consisting of a large number of infected computers. The attacker

can execute malicious code on an infected computer, including ransomware and

scareware.

MetaNet |18

Final project

11. Bot class diagram

Main botnet class

MetaNet |19

Final project

Classes that are responsible for communication with the server

MetaNet |20

Final project

Classes that are responsible for port scanning

MetaNet |21

Final project

Classes that are responsible for task management and execution

MetaNet |22

Final project

Classes that are responsible for Metasploit integration and exploit execution

Logger class: responsible for logging debug information

MetaNet |23

Final project

12. Flask server class diagram

MetaNet |24

Final project

13. Sequence UML diagram

Server<--->Bot communication and task execution

Web serverBot Client side

Connection:sendSignOfLife()

HTTPClient::sendRequest() socketio.emit('bot:signOfLife',...)
socket.on('bot:signOfLife',..)

json.dumps({'tasks': tasks})

Task::parse()
(Thread)

Task

run()

sendResult()

bot.addTaskResult(task, result)

socket.on is a called and add the
bot details to the online bots table
if it is not exists in the table, if it is
exists it updates the bot s last seen
value

Each bot calls
Connection:sendSignOfLife() every 30
seconds

The webserver sends back a
list of tasks that needs to be

executed

For each task in the
list a new thread is
created to execute

the task

After the task finished
executing it sends back

the results to the server
The task result is added to

the database, it can be seen
from the client side

application by clicking Task
result in the menu

MetaNet |25

Final project

Port scan and exploit execution

HostTrackerScanner

setPorts(std::verctor<unsigned int> & ports)

Bot

<<return>>

Scanner::start(int time)

sleep(time)

Thread

new Scanner::mainThread
new Hostracker::initTracker()

<<return>>

Thread

new Scanner::portScan()

hasNext()
<<False>><<return>>

new PortCheck()

Checkport

new boost::asio::io_service()

hostScanner::next()

none

portcheck.start(endpoint)

std::string endpoint

checkConnection()
FALSE

Metasploit

exploit(endpoint)

<<reutrn>>

Main Thread Loop

ThreadGroup[ThreadLimit],
Scanner

portScan Loop

hostTracker h;
Ioservice io_service;
resolver r;
endpoint e;
socket

check_deadline:result:fail

<<return>>

new boost::asio:resolver()

ports loop

vector<unsigned int> ports;

startConnect(endpoint)

checkConnection()
True

<<reutrn>>

<<reutrn>>

<<reutrn>>

<<reutrn>>

sleep(WEEK)

True

The Bot thread triggers the scanner
for the first time with his starting
phase.

Portscan
thread is
responsible for
scan endpoints
that he got
from The
HostTracker.

HostTracker is an iterator of ip
addresses that gives every
scan s threads an endpoint to
scan. The main methods are
hasNext() that check if there are
ip s left and next() that return
the next address.

Checkport triggered by the
portScan thread and open full

tcp connection in order to
make full hanshake that will

gives indication that the port is
open.

The checkPort checks
if the connection is

succeeded. If
connection not over

after defined number
of seconds so the

connection will be
closed automatically.

If the port is
open so the

thread
performs

exploit on-
endpoint with

metasploit.

The scanner is
responsible for
creation of
threads that
will scan host
and ports

MetaNet |26

Final project

14. GUI

Online bots page: Sending task to multiple bots that have common value is possible using the filter textbox

MetaNet |27

Final project

Tasks menu: opens a list of possible tasks that can be sent to a bot , the menu will open when right clicking on a bot from the table.

MetaNet |28

Final project

Task sending dialog: user is prompted for a list of parameters that are needed in order to send the chosen task

MetaNet |29

Final project

Task result table: contains the result/data of the task that were sent back to the server by the bots after executing a task

MetaNet |30

Final project

Botnet debug window: Display debug information when running the bot, this window will

be displayed only in debugging environment.

MetaNet |31

Final project

15. Software test plan

The test plan outlines the scope, approach, resources, and schedule of all testing activities, It identifies the

items and features to be tested and the types of testing that are needed.

Testing strategy

Functional testing – Conducting tests to the functional requirements that were defined in the SRS.

Graphical User interface testing – Conducting tests that will ensure the GUI meets its specification.

Automation testing – Conducting tests that will ensure that the operations that the program executes by

itself (without user interaction) are working correctly.

Boundary testing – Those tests using the extremes of the input domain, e.g. maximum, minimum, just

inside/outside boundaries, typical values, and error values.

Performance testing – Tests that check how the system performs in terms of responsiveness and stability

under a particular workload.

Tests environmental requirements

The goal is to create a testing environment as close to the development environment as possible and to

provide an automated black box test suite that can be run when changes are made to the software. The

test environment is the same windows environment used for software development. Below are the

hardware and software requirements for the test environment.

Hardware

 Intel Core 2 Duo, Quad Core i3, i5, i7, or higher

 AMD Athlon II, Phenom X4, FX or higher

 at least 4GB of RAM.

Software

 VMWare or VirtualBox installed.

 The server side application will be installed in a virtual machine that has Ubuntu 14.04 LTS or

above installed in it.

 The bot will be installed in a virtual machine that has Ubuntu 14.04 LTS or above installed in it.

 The PC that contains the VMs will act as the client (The bot master) and will need a browser that

has JavaScript and CSS support.

MetaNet |32

Final project

16. Software test description and report

1 Test No.

Test if a connection is made between the bot and the server and the bot is being displayed in the

online table when it connects.

Test purpose

Server is running Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Connect to the server

command and control

panel

1

 Execute the bot on a

machine

2

 Wait 10 seconds 3

The bot is added Passed The bot is added Look if the bot is added to

the online bot list

4

MetaNet |33

Final project

2 Test No.

Test if bot search works Test purpose

Server is running, Two bots with different ID number are connected to the server Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Connect to the server command

and control panel

1

 Choose one online bot 2

Only the chosen bot is

displayed in the table.

Passed Only the chosen bot is

displayed in the table.

Write the chosen bot ID to

“Filter” field.

3

3 Test No.

Test if Proxy task that needs to be sent to filtered bots opens the correct corresponding dialog Test purpose

Server is running, A bot connected to the server, The bot is filtered so it is the only one that is

displayed in the table.

Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Connect to the server

command and control

panel

1

 Select ‘Proxy’ from Task (to

filtered) Dropdown

2

`Proxy parameters` string

is displayed on the title of

the dialog.

Passed `Proxy parameters`

string is displayed

on the title of the

dialog.

Click Send task 3

MetaNet |34

Final project

4 Test No.

Test if bot menu is working Test purpose

Server is running, A bot connected to the server Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Connect to the server command

and control panel

1

A task menu opened Passed A task menu opens Right click on a bot in the table 2

5 Test No.

Bot received and executed a task Test purpose

Server is running, A bot is running and connected to the server Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Connect to the server

command and control

panel

1

 A task menu opens Right click on a bot in the

table

2

 A parameter dialog

opens

Choose ‘Proxy’ 3

 Enter ‘8080’ 4

 The dialog

disappears

Click `Send Task` button 5

 Open the bot debug

logging window

6

MetaNet |35

Final project

6 Test No.

Test if the server is not allowing to send a task with empty parameters. Test purpose

Server is running, A bot is running and connected to the server Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Connect to the server

command and control

panel

1

 A task menu opens Right click on a bot in the

table

2

 A parameter dialog

opens

Choose ‘Proxy’ 3

`No enter` sign was

displayed in the mouse

cursor and the dialog

stayed open.

Passed `No enter` sign is

displayed in the

mouse cursor and

the dialog stays

open.

Click `Send Task` button 4

`DEBUG: Proxy => Opened`

is displayed

Passed `DEBUG: Proxy =>

Opened` is

displayed

Wait 0-30 seconds 7

MetaNet |36

Final project

7 Test No.

Test if Proxy task from menu that needs to be sent a specific bot opens the correct corresponding

dialog

Test purpose

Server is running, A bot is running and connected to the server Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Connect to the server

command and control

panel

1

 A task menu opens Right click on a bot in the

table

2

A parameter dialog opens

and `Proxy parameters`

string is displayed on the

title of the dialog and a

textbox labeled `Port` is

displayed in the body of

the dialog.

Passed A parameter dialog

opens and `Proxy

parameters` string

is displayed on the

title of the dialog

and a textbox

labeled `Port` is

displayed in the

body of the dialog.

Choose ‘Proxy’ 3

MetaNet |37

Final project

9 Test No.

Checks if Port Scanner is will not scan when computer disconnected form network. Test purpose

Bot is running; Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Bot starts scan. 1

 Disconnect bot host from

network.

2

Error expected: no

adapters.

Passed Error no adapter Wait for bot to finish scan. 3

8 Test No.

Check Upper bound of port scanner – check what the last IP address that scanned.

Test purpose

Bot is installed, running and ready to start a scan Preconditions

Actual result Passed/Faile

d

Expected result Step description Steps to follow:

 Start scan 1

 Finish scan ports 2

Last IP octet

"XXX.XXX.XXX.254"

Passed Last IP octet

"XXX.XXX.XXX.254"

Check Last IP octet 3

MetaNet |38

Final project

11 Test No.

Test if bots disappear from offline bots table after bot connected. Test purpose

Server is running Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Connect to the server

command and control

panel and choose offline

bots

1

 Execute the bot on a

machine

2

 Wait 60 seconds 3

The bot is disappearing Passed The bot is

disappearing.

Look if the bot is

disappearing from offline

bots table

4

10 Test No.

Check CPU usage with thread limit of 10 less than 30% Test purpose

*THREAD_LIMIT=10, hardware: CPU i3 or above, 4 GB RAM or above. Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Start bot 1

 Start scan 2

CPU less than 30% Passed Less than 30% CPU

usage

Check process Bot CPU

usage

3

MetaNet |39

Final project

12 Test No.

Check asynchronous connection to endpoint that is not exist. Test purpose

Server is running Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Start scan endpoint that no

exits

1

 Send asynchronous TCP

connection

2

 Wait for handle

connections

Check deadline and close

socket.

 Check deadline

and close socket.

Wait 3-5 seconds 3

No route to host. Passed Unreachable host

or no route to host

Get result of connection 4

13 Test No.

Check deadlocks with thread limit=10 Test purpose

Configure IP address with subnet class C, bot is running. Preconditions

Actual result Passed/Failed Expected result Step description Steps to follow:

 Change Thread limit to 10 1

 Set 3 ports 22,8080,5000 2

 Set deadline time to 3 3

 Start scan ports 4

Finished scan properly

with no deadlocks

Passed Finished scan

properly with no

deadlocks

Wait (3*255*3 +15) sec 5

