
Genetic Programming in the Wild:
Evolving Unrestricted Bytecode

Michael Orlov
Department of Computer Science

Ben-Gurion University, PO Box 653
Beer-Sheva 84105, Israel
orlovm@cs.bgu.ac.il

Moshe Sipper
Department of Computer Science

Ben-Gurion University, PO Box 653
Beer-Sheva 84105, Israel
sipper@cs.bgu.ac.il

ABSTRACT
We describe a methodology for evolving Java bytecode, en-
abling the evolution of extant, unrestricted Java programs,
or programs in other languages that compile to Java byte-
code. Bytecode is evolved directly, without any intermedi-
ate genomic representation. Our approach is based upon the
notion of compatible crossover, which produces correct pro-
grams by performing operand stack-, local variables-, and
control flow-based compatibility checks on source and desti-
nation bytecode sections. This is in contrast to existing work
that uses restricted subsets of the Java bytecode instruction
set as a representation language for individuals in genetic
programming. Given the huge universe of unrestricted Java
bytecode, as is programs, our work enables the application
of evolution within this realm. We experimentally validate
our methodology both by extensively testing the correctness
of compatible crossover on arbitrary bytecode, and by run-
ning evolution on a program that exploits the richness of the
Java virtual machine architecture and type system.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program transformation, program modification;
D.3.3 [Programming Languages]: Language Constructs
and Features; D.2.2 [Software Engineering]: Design Tools
and Techniques

General Terms
Algorithms, Languages

Keywords
Java bytecode, software evolution

1. INTRODUCTION
Genetic programming is mostly used as a means to define

a sophisticated genomic representation for a given problem,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

rather than to evolve a bona fide, full-fledged computer pro-
gram. This is (arguably) true not only where traditional
LISP-based GP is concerned, but also for other forms of GP,
such as linear GP and grammatical evolution [18]. Herein,
we propose a method to evolutionarily improve actual, ex-
tant software, which was not intentionally written for the
purpose of serving as a GP representation in particular, nor
for evolution in general. The only requirement is that the
software source code be either written in Java—a highly
popular programming language—or can be compiled to Java
bytecode.

The established approach in genetic programming involves
the definition of functions and terminals appropriate to the
problem, after which evolution of expressions using these
definitions takes place [7, 18]. This approach does not, how-
ever, suit us, since we want to be able to evolve extant Java
programs. Evolving the source code directly is not a vi-
able option, either. The source code is intended for humans
to write and modify, and is thus abundant in syntactic con-
straints. This makes it very hard to produce viable offspring
with enough variation to drive the evolutionary process. We
therefore turn to yet another well-explored alternative: evo-
lution of machine code [15].

Java compilers typically do not produce machine code
directly, but instead compile source-code files to platform-
independent bytecode, to be interpreted in software or, rarely,
to be executed in hardware by a Java Virtual Machine (JVM)
[9]. The JVM is free to apply its own optimization tech-
niques, such as Just-in-Time (JIT) on-demand compilation
to native machine code—a process that is transparent to the
user. The JVM implements a stack-based architecture with
high-level language features such as object management and
garbage collection, virtual function calls, and strong typing.
The bytecode language itself is a well-designed assembly-like
language with a limited yet powerful instruction set [3, 9].
Figure 1 shows a recursive Java program for computing the
factorial of a number, and its corresponding bytecode.

The Java virtual machine architecture, illustrated in Fig. 2,
is successful enough that numerous programming languages
compile directly to Java bytecode. Moreover, Java decompil-
ers are available that facilitate restoration of the Java source
code from compiled bytecode. Since the design of JVM is
closely tied to the design of the Java programming language,
such decompilation often produces code that is very similar
to the original source code [13].

We choose to automatically improve extant Java programs
by evolving the respective compiled bytecode versions. This
allows us to leverage the power of a well-defined, cross-

1043

class F {
int fact(int n) {

// offsets 0-1
int ans = 1;

// offsets 2-3
if (n > 0)

// offsets 6-15
ans = n *

fact(n-1);

// offsets 16-17
return ans;

}}

(a) The original Java source
code. Each line is annotated
with the corresponding code
array offsets range.

0 iconst 1
1 istore 2
2 iload 1
3 ifle 16
6 iload 1
7 aload 0
8 iload 1
9 iconst 1
10 isub
11 invokevirtual #2
14 imul
15 istore 2
16 iload 2
17 ireturn

(b) The compiled bytecode.
Offsets in the code array are
shown on the left.

Figure 1: A recursive factorial function in Java (a),
and its corresponding bytecode (b). The argument
to the virtual method invocation (#2) references the
int F.fact(int) method via the constant pool.

platform, intermediate machine language at just the right
level of abstraction: We do not need to define a special evo-
lutionary language, thus necessitating an elaborate two-way
transformation between Java and our language; nor do we
evolve at the Java level, with its encumbering syntactic con-
straints, which render the genetic operators of crossover and
mutation arduous to implement.

Note that our intent here is not to provide a killer appli-
cation (though we do provide a proof-of-concept example),
but rather to describe in detail the underlying methodology
by which unrestricted bytecode can be evolved successfully.
Furthermore, we do not wish to invent a language to im-
prove upon some aspect or other of genetic programming
(efficiency, terseness, readability, etc.), as has been amply
done (and partly summarized in Section 2.1). Nor do we
wish to extend standard GP to become Turing complete, an
issue which has also been addressed [23]. Rather, conversely,
our point of departure is an extant, highly popular, general-
purpose language, with our aim being to render it evolvable.
We wish to bring evolution to the (Java) masses. The abil-
ity to evolve Java programs might lead to a valuable new
tool in the software engineer’s toolkit. This paper presents
a sledgehammer—the nails will surely follow suit in future
work.

Evolution of unrestricted bytecode is described in Sec-
tion 2. The methodology is experimentally validated in Sec-
tion 3. We present our conclusions in Section 4.

2. BYTECODE EVOLUTION
Our decision to evolve bytecode instead of the more high-

level Java source code is guided in part by the desire to
avoid altogether the possibility of producing non-compilable
source code. The purpose of source code is to be easy for hu-
man programmers to create and to modify, a purpose which
conflicts with the ability to automatically modify such code.
We note in passing that we do not seek an evolvable pro-
gramming language—a problem tackled, e.g., by Spector
and Robinson [20]—but rather aim to handle the Java pro-
gramming language in particular.

fact(7) method call frame

fact(6) method call frame

fact(5) method call frame (active)

int

5

“F”

(this)

int

4

(stack top)

“F”

(this)

int

5

int

1

0 1 2

11

“F”

object

Operand Stack
References objects on the heap. Used to

provide arguments to JVM instructions, such

as arithmetic operations and method calls.

Local Variables Array
References objects on the heap.

Contains method arguments and

locally defined variables.

Program Counter
Holds offset of currently executing

instruction in method code area.

Heap
Shared objects store.

Figure 2: Call frames in the architecture of the Java
virtual machine, during execution of the recursive
factorial function code shown in Fig. 1, with param-
eter n = 7. The top call frame is in a state preced-
ing execution of invokevirtual. This instruction will
pop a parameter and an object reference from the
operand stack, invoke the method fact of class F,
and open a new frame for fact(4) call. When that
frame closes, the returned value will be pushed onto
the operand stack.

Evolving the bytecode instead of the source code allevi-
ates this issue, but not completely. Java bytecode must be
correct with respect to dealing with stack and local variables
(cf. Fig. 2). Values that are read and written should be type-
compatible, and stack underflow must not occur. The Java
virtual machine performs bytecode verification, and raises
an exception in case of any such incompatibility.

We wish not merely to evolve bytecode, but indeed to
evolve correct bytecode. This task is hard, because our pur-
pose is to evolve given, unrestricted code, and not simply
to leverage the capabilities of JVM to perform genetic pro-
gramming. Therefore, basic evolutionary operations, such
as bytecode crossover and mutation, should produce correct
individuals.

We define a good crossover of two parents as one where the
offspring is a correct bytecode program, meaning one that
compiles with no errors; conversely, a bad crossover of two
parents is one where the offspring is an incorrect bytecode
program, meaning one whose compilation produces errors.
While it is easy to define a trivial slice-and-swap crossover
operator on two programs, it is far more arduous to define a
good crossover operator. This latter is necessary in order to
preserve variability during the evolutionary process, because
incorrect programs cannot be run, and therefore cannot be
ascribed a fitness value—or, alternatively, must be assigned
a value of 0. Too many bad crossovers will hence produce a
population with little variability, on whose vital role Darwin
averred:

If then we have under nature variability and a
powerful agent always ready to act and select,
why should we doubt that variations in any way
useful to beings, under their excessively complex
relations of life, would be preserved, accumu-
lated, and inherited? [2]

Indeed, we performed empirical studies of good vs. bad
crossover, concluding that the use of the latter is highly inef-

1044

ficient (at least ten times slower). To wit, we have found that
it is far more efficient (i.e., faster) to use a good crossover
operator (as described below), rather than perform a series
of bad crossovers until a good result chances to come along.

2.1 Previous Work
A number of researchers previously described bytecode

evolution, though as an extension of the standard GP con-
cept, namely, that of using bytecode, or some variant thereof,
as a representation for solving a particular problem, rather
than considering extant programs with the aim of evolving
them directly. That is, none of the research surveyed below
allows the treatment of existing unrestricted bytecode as
the evolving genotype. It should be noted that some of the
bytecode-related papers appeared as brief summaries, with-
out peer review, during the time frame when Java started
to gain popularity.

Stack-based genetic programming (Stack GP) was intro-
duced by Perkis [17]. In Stack GP, instructions operate on a
numerical stack, and whenever a stack underflow occurs (i.e.,
an argument for the operation is unavailable), the respec-
tive instruction is ignored. Whenever multiple data types
are desired, multiple stacks are proposed as an alternative
to strongly typed genetic programming [14]. Stack GP pos-
sesses a number of disadvantages with respect to our aims:
First, ignoring stack underflows will produce incorrect byte-
code segments with ambiguous decompilation results. Sec-
ond, allowing such code will unnecessarily enlarge the search
space, which is already huge—after all, we are evolving ex-
tant, real-world programs, and not evolving programs from
scratch using a limited instruction set. Lastly, our approach
assumes absolutely no control over the JVM architecture:
we do not create stacks at will but are content with JVM’s
single multi-type data stack and general-purpose multi-type
registers (see Fig. 2).

An early introduction to Java bytecode genetic program-
ming (JBGP) was given by Lukschandl et al. [12], who evolved
bytecode sequences with a small set of simple arithmetic and
custom branch-like macro instructions. Lukschandl et al.
evolved very limited individuals with a single floating-point
type in one local variable and no control structures, and
therefore only needed to consider effects of instruction blocks
on operand stack depth in order to avoid stack overflow and
underflow errors. A later work by Lukschandl et al. [11] used
this method in a distributed bytecode evolutionary system
(DJBGP), and presented its application to a telecom rout-
ing problem. Similar approaches were independently intro-
duced by other researchers, as bcGP [4] (which also handles
branching instructions, but does not discuss crossover com-
patibility) and Japhet [6] (which seems to leave compatibil-
ity checks to the Java verifier, although too few details are
provided). The aforementioned approaches are conceptually
limited to using Java bytecode as yet another genotype rep-
resentation for GP. None can be applied to evolving correct
individuals based on unrestricted bytecode—which we show
how to do in the following section.

Once we consider non-bytecode stack-based GP, Tchernev
[21] offered a more thorough treatment of requirements for
crossover in the programming language Forth, arguing that
ensuring same-stack depth at crossover points is not only
better than GP’s popular subtree crossover, but is an en-
gine for combining building blocks that is strictly different
from a macromutation. However, similar to the works dis-

cussed previously, Tchernev considers only the stack depth
in synthetic individuals with restricted primitives. Tchernev
and Phatak [22] later introduced a similar technique for cor-
rect crossover of high-level control structures. This work is
not applicable at all to Java bytecode evolution, since con-
trol structures are not expressed as such in bytecode, and
are instead translated into simpler goto instructions.

Evolutionary program induction using binary machine code
(AIM-GP) was introduced by Nordin [15] as the fastest known
genetic programming method. Although Nordin et al. [16]
later mentioned Java as a possible evolutionary target, the
paper is scarce on details. As of now, Discipulus, the com-
mercial successor to AIM-GP, can only produce Java source
code as a decompilation result from an evolved native ma-
chine code individual, as opposed to our goal of evolving
the intermediate-level bytecode. In AIM-GP, the creation
of viable offspring individuals from parent programs is real-
ized via a careful multi-granularity crossover process. It is
interesting to contrast this work with the attempt by Küh-
ling et al. [8] to forgo any constraints on code and on evo-
lutionary operators, and instead trap all exceptions of code
that is executed as a separate encapsulated entity. We do
not expect this approach to overcome the huge search space
that results from evolving Java programs with unrestricted
crossover and mutation operators. However, since we de-
cided that the evolutionary process should stay close to the
JVM, we cannot completely safeguard bytecode execution
from exceptional conditions, as done e.g, by Huelsbergen [5].
Thus, evaluating evolving bytecode individuals in an encap-
sulated environment—a sandbox—is still necessary.

More recently, Servant et al. [19] introduced JEB, an open-
source tool for Java byte-code evolution, as an extension to
the ECJ evolutionary computation software package [10]. In
JEB, genotype and phenotype bytecodes are separate enti-
ties, and stack underflows are corrected during genotype-
phenotype translation. Other limitations that we discussed
previously—restricted instruction set, no handling of types,
etc.—apply to this work as well. This is however an interest-
ing approach—yet it is undesirable for evolving extant byte-
code, since it introduces a separate representation for evolv-
ing programs and increases the search space. Reduction of
search-space size is better achieved with properly-defined
compatible evolutionary operators, as discussed next.

In summary, although all these works touched upon some
aspect or other of Java bytecode (or, at least, machine code)
evolution, they did so in a restricted way, the ultimate goal
being that of affording a beneficial genomic representation
for problem solving with genetic programming. Our depar-
ture point may be seen as one diametrically opposed: given
the huge universe of unrestricted Java bytecode, as is pro-
grams, we aim to perform evolution within this realm.

2.2 Bytecode Evolution Principles
The Java virtual machine is a stack-based architecture

for executing Java bytecode. The JVM holds a stack for
each execution thread, and creates a frame on this stack for
each method invocation. The frame contains a code array,
an operand stack, a local variables array, and a reference
to the constant pool of the current class [3]. The code ar-
ray contains the bytecode to be executed by the JVM. The
local variables array holds all method (or function) parame-
ters, including a reference to the class instance in which the
current method executes. In addition, the variables array

1045

Table 1: Operand stack and local variables array requirements during execution of the factorial method.
An ‘a’ denotes a type-annotated object reference, and an ‘i’ denotes an integer type. Pop lists are given
in reverse order. A list of types on the stack is given after each instruction, with stack top at the right of
the list. x:y stands for read or write access to local variable x with type y. The 17 instructions are divided
into four parts, each part corresponding to a single source line in Fig. 1(a). The argument to invokevirtual
instruction (#2) references a value in the constant pool that resolves to the int F.fact(int) method signature.

Offset Instruction Description Stack
pops

Stack
pushes

Stack state Vars
read

Vars
written

0 iconst 1 push 1 on the stack i i
1 istore 2 pop stack to the local variable ans i ∅ 2:i

2 iload 1 push n on the stack i i 1:i
3 ifle 16 pop stack, and jump to iload 2 if value 6 0; note that

the encoded offset is relative (+13)
i ∅

6 iload 1 push n on the stack i i 1:i
7 aload 0 push this on the stack a/F i, a/F 0:a/F
8 iload 1 push n on the stack i i, a/F, i 1:i
9 iconst 1 push 1 on the stack i i, a/F, i, i

10 isub pop two values, subtract, and push result i, i i i, a/F, i
11 invoke-

virtual #2
pop object reference and parameter from the stack, and
invoke virtual method; returned value is on the stack

a/F, i i i, i

14 imul pop two values, multiply, and push result i, i i i
15 istore 2 pop stack to the local variable ans i ∅ 2:i

16 iload 2 push the local variable ans on the stack i i 2:i
17 ireturn pop stack, and return value to the calling frame i ∅

also holds local-scope variables. The operand stack is used
by stack-based instructions, and for arguments when call-
ing other methods. A method call moves parameters from
the caller’s operand stack to the callee’s variables array; a
return moves the top value from the callee’s stack to the
caller’s stack, and disposes of the callee’s frame. Both the
operand stack and the variables array contain typed items,
and instructions always act on a specific type. The relevant
bytecode instructions are prefixed accordingly: ‘a’ for an ob-
ject or array reference, ‘i’ and ‘l’ for integral types int and
long, and ‘f’ and ‘d’ for floating-point types float and dou-

ble.1 Finally, the constant pool is an array of references to
classes, methods, fields, and other unvarying entities. The
JVM architecture is illustrated in Fig. 2

To demonstrate the operation of the JVM, consider a sim-
ple recursive program for computing the factorial of a num-
ber, shown in Fig. 1. Table 1 shows a step-by-step execution
of the bytecode. The operand stack is initially empty, and
the local variables array contains a reference to this (the
current class instance) at index 0, and the parameter n at
index 1. The local variable ans is allocated the index 2, but
the corresponding cell is uninitialized.

In our evolutionary setup, the individuals are bytecode
sequences annotated with all the stack and variables infor-
mation shown in Table 1. This information is gathered in
one pass over the bytecode, using the ASM bytecode ma-
nipulation and analysis library [1]. Afterwards, similar in-
formation for any sequential code segment in the individual
can be aggregated separately—Table 2 shows this informa-
tion for several bytecode segments. This preprocessing step
allows us to realize compatible two-point crossover on byte-
code sequences. Code segments can be replaced only by
other segments that use the operand stack and the local vari-

1The types boolean, byte, char and short are treated as the
computational type int by the Java virtual machine, except
for array accesses and explicit conversions [9, §3.11.1].

Table 2: Operand stack and local variables array
requirements for several bytecode segments of the
compiled factorial method. The code array offsets
are given according to Table 1. Object references are
annotated with types that are inferred by data-flow
analysis. Pop lists are given in reverse order—the
topmost value is shown at the right-hand side. Note
that the 14–17 fragment does not require a ready 2:i
value, since write precedes read in this segment. A
potential write, marked with ‘?’, is not guaranteed
to occur.

Offsets Stack
pops

Stack
pushes

Vars read Vars
written

6–15 0:a/F, 1:i 2:i
8–15 i, a/F 1:i 2:i
3–10 i i, a/F, i 0:a/F, 1:i

14–17 i, i 2:i
3–15 i 0:a/F, 1:i 2:i?

ables array in a depth-compatible and type-compatible man-
ner. The compatible crossover thus maximizes the viability
potential for offspring, preventing type incompatibility and
stack underflow errors that would otherwise plague indis-
criminating bytecode crossover. Note that the crossover op-
eration is unidirectional, or asymmetric—the code segment
compatibility criterion as described here is not a symmetric
relation. An ability to replace segment α in individual A
with segment β in individual B does not imply an ability to
replace segment β in B with segment α.

As an example of compatible crossover, consider two iden-
tical programs with the same bytecode as in Fig. 1, which
are reproduced as parents α and β in Fig. 3. We replace
bytecode instructions at offsets 7–11 in parent α with the
single iload 2 instruction at offset 16 from parent β. Off-

1046

Parent α Parent β

iconst_1
istore_2
iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

Offspring x

iconst_1
istore_2
iload_1
ifle
iload_1
iload_2
imul
istore_2
iload_2
ireturn

iconst_1
istore_2
iload_1
ifle
iload_1
iload_2
invokevirtual
istore_2
iload_2
ireturn

(incorrect)

Offspring y

iconst_1
istore_2
iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

(incorrect)

Offspring z

x

y

z

Figure 3: An example of good and bad crossovers.
The two identical individuals α and β represent a
recursive factorial function (see Fig. 1; here we use
an arrow instead of branch offset). In parent α, the
bytecode sequence that corresponds to the fact(n-

1) call that leaves an integer value on the stack, is
replaced with the single instruction in β that corre-
sponds to pushing the local variable ans on the stack.
The resulting correct offspring x and the original
parent β are then considered as two new parents.
We see that either replacing the first two instruc-
tions in β with an empty section, or replacing the
imul instruction in x with the invokevirtual instruc-
tion from β, result in incorrect bytecode, shown as
offspring y and z—see main text for full explanation.

sets 7–11 correspond to the fact(n-1) call that leaves an
integer value on the stack, whereas offset 16 corresponds to
pushing the local variable ans on the stack. This crossover,
the result of which is shown as offspring x in Fig. 3, is good,
because the operand stack is used in a compatible manner
by the source segment, and although this segment reads the
variable ans that is not read in the destination segment,
that variable is guaranteed to have been written previously,
at offset 1.

Alternatively, consider replacing the imul instruction in
the newly formed offspring x with the single invokevirtual
instruction from parent β. This crossover is bad, as illus-
trated by incorrect offspring y in Fig. 3. Although both
invokevirtual and imul pop two values from the stack and
then push one value, invokevirtual expects the topmost
value to be of reference type F, whereas imul expects an
integer. Another negative example is an attempt to replace
bytecode offsets 0–1 in parent β (that correspond to the int

ans=1 statement) with an empty segment. In this case, il-
lustrated by incorrect offspring z in Fig. 3, variable ans is
no longer guaranteed to be initialized when it is read im-
mediately prior to the function’s return, and the resulting
bytecode is therefore incorrect.

The mutation operator employs the same constraints as
compatible crossover, but the constraints are applied to vari-
ations of the same individual. The requirements for correct
bytecode mutation are thus derived from those of compati-
ble crossover. We do not define a mutation operator in this
paper—this we leave for future work.

2.3 Compatible Bytecode Crossover
As discussed in the beginning of the section, compatible

bytecode crossover is a fundamental building block for ef-
fective evolution of correct bytecode. In order to describe

// Queue initially contains instruction a
Q← {a}
while Q 6= ∅ do

// Remove the front of queue

c← Dequeue(Q)
// Sets of locations are initially empty

{bi} ← recorded locations branching to c
compute δ∗a,c from {δ∗a,bi

} and δ∗c
if δ∗a,c is new or changed then

foreach cj ∈ branch destinations of c do
if 〈c, cj〉 6= 〈b, b + 1〉 then

// Insert at end of queue

Q← Enqueue(Q, cj)
record c as location branching to cj

Figure 4: Compute-Accesses(a, b): A BFS-like
traversal of the data-flow graph starting at location
a and ending at b, in order to compute variables ac-
cessed in the code segment [a, b]. δ∗x,y denotes the

three access sets δr
x,y, δw

x,y, and δw!
x,y. Here, a branch

denotes natural transitions to subsequent instruc-
tion as well as transitions resulting from conditional
and unconditional branching instructions. The inner
if clause ensures that a “natural” transition at the
end of segment [a, b] is not unnecessarily followed.

the formal requirements for compatible crossover, we need
to define the meaning of variables accesses for a segment of
code. That is, a section of code (that is not necessary lin-
ear, since there are branching instructions) can be viewed as
reading and writing some local variables, or as an aggrega-
tion of reads and writes by individual bytecode instructions.
However, when a variable is written before being read, the
write “shadows” the read, in the sense that the code exe-
cuting prior to the given section does not have to provide a
value of the correct type in the variable.

2.3.1 Variables Access Sets
We define variables access sets, to be used ahead by the

compatible crossover operator, as follows: Let a and b be
two locations in the same bytecode sequence. For a set of
instructions δa,b that could potentially be executed starting
at a and ending at b, we define the following access sets.
• δr

a,b: set of local variables such that for each variable v,
there exists a potential execution path (i.e., one not neces-
sarily taken) between a and b, in which v is read before any
write to it; this set of variables is the vars read column in
Table 2;
• δw

a,b: set of local variables that are written to through
at least one potential execution path; the corresponding col-
umn in Table 2 is vars written;
• δw!

a,b: set of local variables that are guaranteed to be
written to, no matter which execution path is taken; in Ta-
ble 2, non-potential writes in the vars written column cor-
respond to this set.

These sets of local variables are incrementally computed
by analyzing the data flow between locations a and b. For
a single instruction c, the three access sets for δc are given
by the Java bytecode definition. Consider a set of (normally
non-consecutive) instructions {bi} that branch to instruction
c or have c as their immediate subsequent instruction. The
variables accessed between a and c are computed as follows:

1047

Good α β
pre-stack **** ****

post-stack *** ***

depth 1 2

(a) Case 1(a). Whereas β
has necessary stack depth of
2 (two pops and one push),
α has a stack depth of 1
(one pop). However, α has
more stack available, and can
be viewed as having a stack
depth of 2.

Bad α β
pre-stack * ****

post-stack ∅ ***

depth 1 2

(b) Case 1(a). Here, α cannot
be viewed as having a stack
depth of 2, since the whole
stack depth before α is 1.

Good α β
pre-stack **AB **AA

post-stack **B **C

depth 3 2

(c) Case 1(b). Stack pops“AB”
(2 stack frames) are narrower
than “AA”, whereas stack push
“C” is narrower than “B”.

Bad α β
pre-stack **AB **Af

post-stack **B **A

depth 3 2

(d) Case 1(b). Stack pops
“AB” are not narrower than
“Af”, since the object refer-
ence B and the primitive type
f are incompatible. Also,
stack push “A” is not narrower
than “B”.

Good α β
pre-stack iB** ****

post-stack iA** ****

depth 4 2

(e) Case 1(c). Stack pops “iB”
(extra 2 stack frames) are nar-
rower than stack pushes “iA”.

Bad α β
pre-stack *A** ***

post-stack *B** ***

depth 3 2

(f) Case 1(c). Stack pop “A”
(extra 1 stack frame) is not
narrower than stack push “B”.

Figure 5: Illustrations to the operand stack require-
ments in bytecode crossover constraints. Here, we
assume that class B extends class A, and B is thus a
narrower type than A, and that class C similarly ex-
tends class B. The symbols i and f denote the prim-
itive types int and float. The * symbol is used in
cases where the precise type does not matter. For
stacks, the topmost value is shown at the right-hand
side. Pre-stack and post-stack are states of stack be-
fore and after execution of code segment.

• δr
a,c is the union of all reads δr

a,bi
, with the addition

of variables read by instruction c—unless these vari-
ables are guaranteed to be written before c. Formally,
δr

a,c =
`S

i δr
a,bi

´
∪

`
δr

c \
T

i δw!
a,bi

´
.

• δw
a,c is the union of all writes δw

a,bi
, with the addition of

variables written by instruction c: δw
a,c =

`S
i δw

a,bi

´
∪ δw

c .

• δw!
a,c is the set of variables guaranteed to be written

before c, with the addition of variables written by in-
struction c: δw!

a,c =
`T

i δw!
a,bi

´
∪δw!

c (note that δw!
c = δw

c).
We therefore traverse the data-flow graph as shown in

Fig. 4, starting at a, and updating the variables access sets
as above, until they stabilize—i.e., stop changing.2 During
the traversal, necessary stack depths—such as the number
of pops in Table 2—are also updated. The requirements for
compatible bytecode crossover can now be specified.

2The data-flow traversal is similar in nature to the data-flow
analyzer’s loop in [9, §4.9.2].

Good
βw 2:i, 3:C, 1:*
post-αr 2:i, 3:B, 4:*

(a) Case 2(a). Variables 2:i,
3:C that can be written by
β are narrower than variables
2:i, 3:B that can be read af-
ter α.

Bad
βw 2:i, 3:A
post-αr 2:f, 3:B

(b) Case 2(a). Variable 2:i is
not compatible with 2:f, and
variable 3:A is not narrower
than 3:B.

Good

pre-αw! 2:*, 1:C, 4:f
βw! 2:*, 3:*
post-αr 2:* 3:* 1:A 4:f

(c) Case 2(b). Variables 1:A,
4:f that can be read after α
and are not necessarily writ-
ten by β, are certainly writ-
ten before α as narrower types
1:C, 4:f.

Bad

pre-αw! 2:f, 1:A
βw! 3:*
post-αr 2:i 3:* 1:B 4:*

(d) Case 2(b). Variable 2:f is
not compatible with 2:i, vari-
able 1:A is not narrower than
1:B, and variable 4 is not nec-
essarily written either by β or
before α.

Good

pre-αw! 2:i, 3:C, 1:*
βr 2:i, 3:B

(e) Case 2(c). Variables 2:i,
3:B that can be read by β, are
necessarily written before α as
narrower types 2:i, 3:C.

Bad

pre-αw! 2:i, 3:C, 1:*
βr 2:f, 3:B, 4:*

(f) Case 2(c). Variable 2:i is
not compatible with 2:f, and
variable 4 is not necessarily
written before α.

Figure 6: Illustrations to the local variables require-
ments in bytecode crossover constraints. Notation
and types used are similar to Fig. 5; x:y stands for
read or write access to local variable x with type y.
For example, 2:i in βr means that segment β reads
variable 2 as an int.

2.3.2 Bytecode Constraints on Crossover
In order to attain viable offspring, several conditions must

hold when performing crossover of two bytecode programs.
Let A and B be functions in Java, represented as bytecode
sequences. Consider segments α and β in A and B, respec-
tively, and let pα and pβ be the necessary depth of stack
for these segments—i.e, the minimal number of elements in
the stack required to avoid underflow. Segment α can be
replaced with β if the following conditions hold.

1. Operand stack (illustrated in Fig. 5):
(a) it is possible to ensure that pβ 6 pα by prefixing

stack pops and pushes of α with some frames from
the stack state at the beginning of α;

(b) α and β have compatible stack frames up to depth
pβ : stack pops of α have identical or narrower
types as stack pops of β, and stack pushes of β
have identical or narrower types as stack pushes
of α;

(c) α has compatible stack frames deeper than pβ :
stack pops of α have identical or narrower types
as corresponding stack pushes of α.

2. Local variables (illustrated in Fig. 6):
(a) local variables written by β (βw) have identical

or narrower types as corresponding variables that
are read after α (post-αr);

(b) local variables read after α (post-αr) and not nec-
essarily written by β (βw!) must be written before

1048

class Gecco {
Number simpleRegression(Number num) {
double x = num.doubleValue();
double llsq = Math.log(Math.log(x*x));
double dv = x / (x - Math.sin(x));
double worst = Math.exp(dv - llsq);
return Double.valueOf(worst + Math.cos(1));

/* Rest of class omitted */ }}

Figure 7: Simple Symbolic Regression in Java.
Worst-of-generation individual in generation 0 of the
x4 + x3 + x2 + x regression experiment of Koza [7,
ch. 7.3], as freely translated by us into a Java in-
stance method with primitive and reference types.
Since the archetypal individual (EXP (- (% X (- X

(SIN X))) (RLOG (RLOG (* X X))))) does not contain
the complete function set {+, -, *, %, SIN, COS, EXP, RLOG},
we added a smattering of extra code in the last line,
providing analogs of + and COS, and, incidentally, the
constant 1. Protecting function arguments is unnec-
essary in our approach.

α (pre-αw!), or provided as arguments for call to
A, as identical or narrower types;

(c) local variables read by β (βr) must be written
before α (pre-αw!), or provided as arguments for
call to A, as identical or narrower types.

3. Control flow:
(a) no branch instruction outside of α has branch des-

tination in α, and no branch instruction in β has
branch destination outside of β;

(b) code before α has transition to the first instruc-
tion of α, and code in β has transition to the first
instruction after β.

Compatible bytecode crossover prevents verification er-
rors in offspring, in other words, all offspring compile sans
error. As with any other evolutionary method, however, it
does not prevent production of non-viable offspring—in our
case, runtime errors. An exception or a timeout can still
occur during an individual’s evaluation, and the fitness of
the individual should be reset accordingly.

3. EXPERIMENTAL VALIDATION
In order to validate our approach to evolving unrestricted

Java bytecode, we need to ensure that whenever a poten-
tial unidirectional crossover between two programs is judged
compatible, as outlined in Section 2.3, the resulting individ-
uals are correct—i.e., pass verification (“compile”) when the
new program is loaded by the Java virtual machine. It is
easy to see that the requirements for compatible crossover
are necessary, as illustrated by “bad” counterexamples in
Figs. 5 and 6. However, no amount of formalism will con-
vince us that these requirements are sufficient to handle re-
placement of segments across genuine unrestricted functions
compiled to bytecode.

We have extensively tested evolutionary operators on un-
restricted bytecode with arbitrarily complex Java class files,
leaving out nary a sophisticated Java feature: control flow
using loops, if , switch statements, variables of different
types exploiting the hierarchy of types and interfaces, ob-
ject creation and construction using the new operator, and
so on—all were tested. We have also manually written byte-

class Gecco {
Number simpleRegression(Number num) {
double d = num.doubleValue();
d = num.doubleValue();
double d1 = d; d = Double.valueOf(d + d * d *

num.doubleValue()).doubleValue();
return Double.valueOf(d +

(d = num.doubleValue()) * num.doubleValue());
/* Rest of class unchanged */ }}

Figure 8: Decompiled contents of method simpleRe-

gression that evolved after 17 generations from the
Java program in Fig. 7. It is interesting to observe
that because the evolved bytecode does not adhere
to the implicit rules by which typical Java compil-
ers generate code, the decompiled result is slightly
incorrect: the assignment to variable d in the return
statement occurs after it is pushed on the stack.
This is a quirk of the decompiler—the evolved byte-
code is perfectly correct and functional. The com-
putation thus proceeds as (x+x ·x ·x)+(x+x ·x ·x) ·x,
where x is the method’s input.

code using the Jasmin Java assembler, to reach borderline
cases unattainable by compiling from regular Java source
code—thus ensuring that the methodology does not assume
specific patterns of bytecode generation. The resulting in-
dividuals were then loaded and instantiated using the Java
class loader. In all cases, without exception, instantiation
passed without a verification error, implying that handling
of types on operand stack and in local variables is cor-
rect. We are thus confident that our methodology is an
industrial-strength design, applicable to automatic program-
ming within the big, wild universe of extant Java bytecode
programs.

We also need to test the feasibility of bytecode evolution.
That is, we need to see that evolution of unrestricted byte-
code can be driven by the compatible crossover operator.
For this purpose, we integrated our framework, which uses
ASM [1], with the ECJ evolutionary framework [10]. We
then considered a classic test case in GP—namely, simple
symbolic regression [7], where individuals with a single nu-
meric input and output are tested on their ability to ap-
proximate the polynomial x4 + x3 + x2 + x on 20 random
samples. Since our approach needs an existing program, we
initialized the initial population with copies of a single indi-
vidual translated into Java. To be sure, we picked the worst
possible individual, as described in Fig. 7.

To remain faithful to the original experiment, we used the
same parameters where possible: a population of 500 indi-
viduals, crossover probability of 0.9, and no mutation. To
facilitate implementation we used tournament selection with
tournament size 2 instead of fitness-proportionate selection,
which was used originally. We chose bytecode segments ran-
domly before checking them for crossover compatibility. An
ideal individual was found in every run. A typical evolu-
tionary result, shown in Fig. 8, establishes without a doubt:
unrestricted bytecode evolution works as a comprehensive
evolutionary computation method.

4. CONCLUSIONS
We presented a powerful tool by which extant software,

written in the Java programming language, or in a language

1049

that compiles to Java bytecode, can be evolved directly,
without an intermediate genomic representation, and with
no restrictions on the constructs used. We introduced com-
patible crossover, a fundamental evolutionary operator that
produces correct programs by performing operand stack-,
local variables-, and control flow-based compatibility checks
on source and destination bytecode sections.

Are compatible crossover requirements necessary for evolv-
ing correct bytecode? After all, the JVM includes a veri-
fier that signals upon instantiation of a problematic class,
a condition easily detected. There are several reasons that
compatible evolutionary operators are crucial to unrestricted
bytecode evolution. One reason is that precluding bad cross-
overs avoids synthesizing, loading, and verifying a bad indi-
vidual. In measurements we performed, the naive approach
(allowing bad crossover) is at least ten times slower than our
unoptimized implementation of compatible crossover. How-
ever, this reason is perhaps the least important. Once we
rely on the JVM verifier to select compatible bytecode seg-
ments, we lose all control over which segments are consid-
ered consistent. The built-in verifier is more permissive than
strictly necessary, and will thus overlook building blocks in
given bytecode. Moreover, the evolutionary computation
practitioner might want to implement stricter requirements
on crossover, or select alternative segments during compati-
bility checking—all this is impossible using the naive verifier-
based approach.

We intend to pursue two important avenues of research
that present themselves. First, we aim to define a process
by which consistent bytecode segments can be found during
compatibility checks, thus improving preservation of build-
ing blocks during evolution. Second, we wish to apply unre-
stricted bytecode evolution to the automatic improvement
of existing applications, establishing the relevance of this
methodology to the realm of extant software.

Acknowledgments
Michael Orlov is supported by the Adams Fellowship Pro-
gram of the Israel Academy of Sciences and Humanities,
and is partially supported by the Lynn and William Frankel
Center for Computer Sciences.

5. REFERENCES
[1] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code

manipulation tool to implement adaptable systems. In
Adaptable and Extensible Component Systems, Oct. 17–18,
Grenoble, France, pp. 184–195, 2002.

[2] C. Darwin. On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the
Struggle for Life. John Murray, London, 1859.

[3] J. Engel. Programming for the JavaTM Virtual Machine.
Addison-Wesley, Reading, MA, USA, 1999.

[4] B. Harvey, J. Foster, and D. Frincke. Towards byte code
genetic programming. In W. Banzhaf et al., editors,
Proceedings of the Genetic and Evolutionary Computation
Conference, Orlando, FL, USA, July 13–17, vol. 2,
p. 1234, 1999. Morgan Kaufmann.

[5] L. Huelsbergen. Fast evolution of custom machine
representations. In D. Corne et al., editors, The 2005 IEEE
Congress on Evolutionary Computation, 2–5 Sep.,
Edinburgh, Scotland, UK, vol. 1, pp. 97–104. IEEE Press.

[6] S. Klahold, S. Frank, R. E. Keller, and W. Banzhaf.
Exploring the possibilites and restrictions of genetic
programming in Java bytecode. In J. R. Koza, editor, Late
Breaking Papers at the Genetic Programming 1998

Conference, Madison, WI, USA, July 22–25, pp. 120–124,
1998. Omni Press.

[7] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press,
Cambridge, MA, USA, 1992.

[8] F. Kühling, K. Wolff, and P. Nordin. A brute-force
approach to automatic induction of machine code on CISC
architectures. In J. A. Foster et al., editors, Genetic
Programming: 5th European Conference, EuroGP 2002,
Kinsale, Ireland, Apr. 3–5, vol. 2278 of LNCS,
pp. 288–297, 2002. Springer-Verlag.

[9] T. Lindholm and F. Yellin. The JavaTM Virtual Machine
Specification. Addison-Wesley, Boston, MA, USA, second
edition, 1999.

[10] S. Luke and L. Panait. A Java-based evolutionary
computation research system. Online, 2004.
http://cs.gmu.edu/~eclab/projects/ecj.

[11] E. Lukschandl, H. Borgvall, L. Nohle, M. Nordahl, and
P. Nordin. Distributed Java bytecode genetic programming
with telecom applications. In R. Poli et al., editors,
Genetic Programming: European Conference, EuroGP
2000, Edinburgh, Scotland, UK, Apr. 15–16, vol. 1802 of
LNCS, pp. 316–325, 2000. Springer-Verlag.

[12] E. Lukschandl, M. Holmlund, E. Modén, M. Nordahl, and
P. Nordin. Induction of Java bytecode with genetic
programming. In J. R. Koza, editor, Late Breaking Papers
at the Genetic Programming 1998 Conference, Madison,
WI, USA, July 22–25, pp. 135–142, 1998. Omni Press.

[13] J. Miecznikowski and L. Hendren. Decompiling Java
bytecode: Problems, traps and pitfalls. In R. N. Horspool,
editor, Compiler Construction: 11th International
Conference, CC 2002, Grenoble, France, Apr. 8–12, vol.
2304 of LNCS, pp. 111–127, 2002. Springer-Verlag.

[14] D. J. Montana. Strongly typed genetic programming.
Evolutionary Computation, 3(2):199–230, 1995.

[15] P. Nordin. Evolutionary Program Induction of Binary
Machine Code and its Applications. Krehl Verlag, Münster,
Germany, 1997.

[16] P. Nordin, W. Banzhaf, and F. D. Francone. Efficient
evolution of machine code for CISC architectures using
blocks and homologous crossover. In L. Spector et al.,
editors, Advances in Genetic Programming, vol. 3,
chap. 12, pp. 275–299. The MIT Press, Cambridge, MA,
USA, 1999.

[17] T. Perkis. Stack-based genetic programming. In
Z. Michalewicz et al., editors, Proceedings of the First
IEEE Conference on Evolutionary Computation, June
27–29, Orlando, FL, USA, vol. 1, pp. 148–153. IEEE
Neural Networks, 1994.

[18] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide
to Genetic Programming. Lulu Enterprises, UK, Mar. 2008.

[19] F. Servant, D. Robilliard, and C. Fonlupt. JEB: Java
evolutionary byte-code — implementation and tests. In
Artificial Evolution, 7th International Conference, EA
2005, Lille, France, Oct. 26–28, 2005.

[20] L. Spector and A. Robinson. Genetic programming and
autoconstructive evolution with the Push programming
language. Genetic Programming and Evolvable Machines,
3(1):7–40, 2002.

[21] E. B. Tchernev. Forth crossover is not a macromutation?
In J. R. Koza et al., editors, Genetic Programming 1998:
Proceedings of the Third Annual Conference, July 22–25,
Madison, WI, USA, pp. 381–386, 1998. Morgan Kaufmann.

[22] E. B. Tchernev and D. S. Phatak. Control structures in
linear and stack-based genetic programming. In M. Keijzer,
editor, Late Breaking Papers at the 2004 Genetic and
Evolutionary Computation Conference, June 26–30,
Seattle, WA, USA. Distributed on CD-ROM, 2004.

[23] J. R. Woodward. Evolving Turing complete
representations. In R. Sarker et al., editors, The CEC 2003
Congress on Evolutionary Computation, Canberra,
Australia, 8–12 Dec., vol. 2, pp. 830–837. IEEE Press.

1050

http://cs.gmu.edu/~eclab/projects/ecj

	1 Introduction
	2 Bytecode Evolution
	2.1 Previous Work
	2.2 Bytecode Evolution Principles
	2.3 Compatible Bytecode Crossover
	2.3.1 Variables Access Sets
	2.3.2 Bytecode Constraints on Crossover

	3 Experimental Validation
	4 Conclusions
	5 References

