
Descending Requirements Search for DisCSPs
Michael Orlov1 and Amnon Meisels2

Abstract. A new search algorithm, Descending Requirements
Search (DESRS), for Distributed CSPs is proposed.

The algorithm is composed of two independent phases. In the first
phase, agents form a binary hierarchy of groups. The distributed par-
tition algorithm uses a heuristic that prefers to join neighbors that
are strongly constrained, into groups. This is done concurrently at all
levels of the hierarchy.

In the second phase, concurrent independent backtracking search
processes grow partial assignments along a hierarchy of agent
groups, each agent participating in multiple search processes. The or-
der of assignments is partially determined by the hierarchy of groups.
Independent partial solutions are grown by agents, each partial so-
lution is sent higher up in the hierarchy, ultimately resulting in the
top-level agent producing a solution, or in some agent producing an
emptyNogood.

The new algorithm is evaluated experimentally on randomly gen-
erated DISCSPs. Both run-time performance and network load of
DESRS are better than Asynchronous Backtracking (ABT). The run-
time performance of DESRS is similar to that of the best concurrent
search algorithm CONCDB, on medium sized problems.

1 Introduction

Distributed search algorithms for distributed constraint satisfaction
use the concurrency of multi-agent execution in many forms. One
popular way of concurrency is to let all agents participate in a
single backtracking search, by operating asynchronously. In asyn-
chronous backtracking (ABT) [2, 10], agents assign their variables
asynchronously and check for consistency by sending forwardok?
messages. Backtracking operations are performed by sendingNo-
goods, and for the correctness of the algorithm a fixed order of agents
is essential [10].

Another form of achieving concurrency for DISCSP search is
to use multiple search processes. Concurrent dynamic backtracking
(CONCDB) utilizes multiple concurrent search processes on a dis-
tributed CSP [11–13]. CONCDB maintains a dynamic number of
backtracking search processes and generates an efficient concurrent
performance [13].

The present paper proposes to use cooperation among multiple
concurrent search processes, each searchinga partial search space.
The proposed algorithm uses a hierarchy of groups of agents that
search concurrently for partial solutions. InDescending Require-
ments Search(DESRS) groups of agents communicate in order to
maintain consistency and arrive at a consistent solution. Each group
in the constructed hierarchy is represented by one of its members.

1 Supported by the Lynne and William Frankel Center for Computer Sciences
and the Paul Ivanier Center for Robotics Research and Production Manage-
ment.

2 Ben-Gurion University, Israel, email:{orlovm,am}@cs.bgu.ac.il .

The representative agents (i.e.,leaders) compute the consistent par-
tial solutions for the agents that form the group. Naturally, an impor-
tant part of this hierarchical search algorithm is the smart partition of
the agents in the hierarchy of groups.

DESRS is composed of two phases. In the first phase, agents gen-
erate a hierarchy of groups and select representatives for each group.
Representative agents maintain partial solutions of the group they
represent and connections with other groups. In the second phase
of the algorithm, the hierarchy of groups of agents searches concur-
rently for multiple solutions of the DISCSP.

The grouping of agents generates partial orders of assignments
among agents. The hierarchy takes the form of a binary tree. Solu-
tions are generated by passing compatible partial solutions among all
agents. Consequently, the grouping results in a partial order among
agents which incrementally generate the solutions.

DESRS generates only compatible partial solutions. Agentsextend
partial solutions generated by other agents or groups. The leaders of
groups at all levels route partial solutions of one of their compo-
nents to their other components, to be extended in a consistent way.
Requirements for extending partial solutions are beingrouted down
(i.e., descended) by the leaders of groups.

Descending requirements search does not impose a total order on
the agents or variables of the problem, just the partial order that is
implicit in the partition into groups. It is complete and correct, and
provides multiple solutions to the DISCSP. DESRS maintains mul-
tiple concurrent search procedures, that are coordinated within each
group (level) in the hierarchy by the leader of that group. By main-
taining multiple search processes concurrently, search can be made
more efficient, especially if multiple solutions are needed.

The algorithm is evaluated experimentally on randomly generated
DISCSPs [5, 6, 8], and compared to existing search algorithms —
ABT [10] and CONCDB [13]. The DESRS algorithm is shown ex-
perimentally to perform better than ABT on all problems. The con-
current runtime performance of DESRS is similar to that of CON-
CDB on problems of limited complexity.

Section 2 describes the first phase of DESRS — partitioning of
agents into a hierarchy of groups. Section 3 describes the solving
phase of the algorithm. In Section 4, an experimental evaluation
of DESRS on randomly generated problems is presented. Section 5
presents our conclusions, including the discussion of the distributed
partitioning algorithm, which is of interest by itself.

2 Group partitioning

The idea at the basis of hierarchical search is to prune inconsistent
partial assignments by concurrent processes of computation. That is,
consistent partial assignments are produced concurrently by groups
of agents, and then united into larger consistent assignments. Agents
are divided into a hierarchy, where each agent belongs to groups at

mailto:orlovm@cs.bgu.ac.il

different levels. Each group has a level, where groups at leveli are
composed of zero or two groups of levelj < i. The result is a binary
tree, where all non-leaf nodes have two children. There is exactly one
group containing all agents (i.e., the entire DISCSP).

Each group has an agent that stores and manipulates the consis-
tent partial assignments of the group. This agent is termed the rep-
resentative agent, or theleader, of the group. Messages containing
consistent partial assignments of a group are sent by the group’s rep-
resentative to the leader of the next higher level. In order to con-
struct consistent partial solutions, each leader communicates with its
group, in order to request generation of consistent partial solutions
(Section 3).

The descending requirements search algorithm first partitions the
DISCSP into groups of agents that form a hierarchy. This is done by
merging pairs of agents or pairs of groups into higher level groups
(Algorithm 1).

Consider the constraints network in Figure 1. Note that there
is only one constraint between the two groups{a,b,c,d,e} and
{ f ,g,h, i, j}. As a result, the merging of consistent partial assign-
ments to these two particular groups will involve checking only this
single constraint (connecting agentsa and f). A possible partition
for this constraints network is given in Figure 2, which also specifies
the number of constraints between neighboring groups. At level 0 of
the tree in Figure 2 there are 6 agents. Three of the groups in level
1 include 2 agents each, and the other three are composed of a sin-
gle agent —{g}, {h}, {i}. There are 4 groups at level 2:{a,b,c,d},
{e}, { f , j,g}, {h, i}. There are 2 groups at level 3, and, the top-level
group is at level 4.

a

b

e fd

c

g

j i

h

Figure 1. Constraints graph with 10 nodes. Edges represent binary con-
straints.

e, 1

a, 3 i, 3

c, 2 e f, 2 h, 1

a, 1 d, 1

a b c d

j, 1 g

f j

h i

Figure 2. Partitioning of the constraints graph of Figure 1. Non-leaf nodes
show the representative agent which is responsible for the corresponding
group, and the number of constraints connecting the merged groups.

The partitioning process starts with all agents at level 0. Pairs of
agents are merged into level-1 groups, and pairs of level-i groups are

merged into leveli + 1 groups. If an agent or a group is unable to
merge with another group at some level, it becomes a group of one
level higher. In this higher level, it is the only component. The root of
the binary tree that is formed by the partition represents the complete
DISCSP.

Note that at a first glance, it may seem that the partitioning shown
in Figure 2 is actually “bad”, in the sense that pairs of agents or
groups selected at the lower levels in the hierarchy are not the most
constrained. This illusion stems from the general situation in which
bigger groups have a greater total number of constraints between
them. This is not true for the number of constraintsper agent.

During the partitioning process each generated group designates
one of its members to be a leader of the group. Since the partition
follows the structure of a binary tree, each agent can be a represen-
tative of a single group. In other words, forn agents at mostn− 1
can be leaders. An example assignment of leaders is also shown in
Figure 2. Agentc is the leader of a group with four components. It
has two subgroups whose leaders are agentsa andd. At the solving
stage of the DESRS algorithm, agenti routes growing partial solu-
tions produced by its two subgroups. The partial solutions are sent to
agenti by agentf (which leads{ f , j,g}) and agenth (which leads
{h, i}).

Every agent performs two independent tasks. As a group repre-
sentative it controls the production of consistent partial assignments
of its group. As a local constraints network, it responds to requests
for partial solution extensions. Ultimately, the root node agent pro-
duces globally consistent solutions. There are, in principle, two main
ways to merge partial solutions. One way is for the leader to merge
two partial solutions that were produced independently by its sub-
groups. Another way is for the leader to request its subgroups to
completepartial solutions produced by the other subgroups. The lat-
ter approach is presented in the remainder of this paper.

Partitioning into groups is a distributed algorithm, such that upon
its termination groups of agents are organized into a binary tree. All
agents are leafs, and representative agents compose all higher levels
of the binary tree (see Figure 2). Groups at the same level are disjoint,
and groups of higher level contain groups of lower levels.

The main part of the algorithm is presented in Algorithm 1. The al-
gorithm is run by each agent, and performs merges of pairs of agents
or groups into ever larger groups. It runs concurrently by each agent
selecting a neighbor to merge with. Merging is performed when two
agents agree to merge.

The algorithm works as follows. Each agents selects one of its
neighbors (say,g) as a candidate for merging with. If the selection
is mutual, the agents merge. If not, the selected agentg can either
respond negatively (i.e.,NoJoin) when its own selection was differ-
ent, or informs that it has already made a merging decision (i.e.,
Done〈g, . . . 〉). Any merging decision is sent to all neighbors of the
merging agent withDone messages. Agents form a queue of all their
neighbors, ordered by their priority of merging with these neighbors,
and erase from the queue the neighbors that have already merged.
Agents stop proposing when their queues of neighbors are empty.
In such a case, the agent advances to the next level without joining
another group.

Partitioning proceeds inlevels, where during each level every
agent joins a neighboring agent, unless this is not possible. At the
end, a binary hierarchy of groups is established, with the root group
containing all the nodes of the network. During each level every
agent continuously tries to join one of its neighbors, preferring agents
with lower connection weight. This way, dense connectivity (i.e.,
constraints tightness) remains in lower levels of the hierarchy, and

Algorithm 1 : GROUP-PARTITION(s, N): Partitioning into
groups.

Input : agents, its neighborsN
Output : componentsC, pairs, leader, parent← USER
Locals : Ñ, Nldr, g, level← p, start← TRUE, next-level

SEND(s, Leader〈N, {(s,N,0)}, TRUE, 0〉)1
loop foreverdo2

switch RECEIVE() do3
caseJoin〈t〉4

if t = g then5
SEND(g, Components〈C〉)6

else7
SEND(t, NoJoin)8

caseNoJoin9
g← SELECT(Ñ)10
SEND(g, Join〈s〉)11

caseComponents〈Cg〉12
if s 6= g then13
{leader,C}← SELECT-LEADER(C, Cg, next-level)14
if parent = USER then15

parent← leader16

else17
leader← s18

foreach t ∈ N∪{s} do19
SEND(t, Done〈s, leader〉)20

caseDone〈t, leadert〉21
if t 6= s then22

Nldr← UPDATE(Nldr, N, t, leadert)23

Ñ← Ñ r{t}24

if Ñ = NIL then25
level← p26
SEND(leader, Leader〈Nldr r{leader}, C, s = g,27
next-level〉)

caseLeader〈N’, C’, single, level’〉28
if start then29

N← N’, C← C’, Nldr← NIL30
else31

pairs←
{
({t, r},w) : (t, N̂)∈C ∧ r∈C’ ∧ (r,w)∈ N̂

}
32

N← COMBINE(N, N’), C← C∪C’33

start←¬start∨ single34
if start then35

if N = NIL then36
leader← USER37
foreach t ∈ C do38

SEND(t, Search)39

else40
level← level’, next-level← level+141

Ñ← N∪{(s,1.5)}42

g← SELECT(Ñ)43
SEND(g, Join〈s〉)44

inconsistent partial solutions are expected to be pruned as early as
possible.

Let us look closer at Algorithm 1. First, several variables are de-
clared:

• N: static list of neighboring abstract agents, associated with the
weights of the respective edges.

• Ñ: dynamic list of neighbors, initiallyN with the addition ofs. The
list shortens as the neighbors indicate that they have joined other
agents.

• C: agents that compose the list of components ofs, wheres is
a leader of a group of agents.C is composed of triplets of type

Algorithm 2 : SELECT-LEADER(C, C’, level): Deterministic
leader selection.
Input : primary components listC, secondary components list

C’, level
Output : new leaderleader, possibly updatedC
Locals : max-size←−1, Best-Nodes← NIL

forall (t,N’,0) ∈ C∪C’ do1

size←
∣∣({t}×N’)∩

(
(C×C’)∪ (C’×C)

)∣∣2

if size > max-size then3
Best-Nodes← NIL4
max-size← size5

if size = max-size then6
Best-Nodes← Best-Nodes∪{t}7

leader← DETERMINISTIC-PICK(Best-Nodes)8
if (leader, ·, levelldr) ∈ C then9

levelldr← level10

(a,Na, level). A value level > 0 indicates that the simple agenta
was selected as a leader at that level.Na is the list ofa’s neighbors
in the constraints graph (neighbors at level 0, composed of single
agents).

• leader: the leader of an agents in the groups hierarchy. The value
USER indicates thats represents the top-level group, and that the
solutions which it produces are received by the user.

• Nldr: list of neighbors of an agent that is a leader. This list grows
as the neighbors at the current level indicate that they have joined
with another agent; it contains the leaders of these neighbors.

• parent: the parent of the leaf-level simple agent. For example, in
Figure 2 the parent off is j, but the leader of (the representative
agent)f is i.

• pairs: list of edges between agents that are members of two sub-
groups that have been merged, ordered by increasing weights of
the edges. Pairs are composed of members ofdifferentsubgroups.

The communication procedures used in the algorithm also deserve
an explanation. Since at a given level we are only interested in receiv-
ing messages from agents that are at the same level, each message is
tagged with a level parameter:

• SEND(destination, tag, message) — sends message with a given
tag; never blocks.

• RECEIVE(tag) — reads only messages with the given tag at-
tached, and leaves other messages in the queue; blocks if there
are no appropriate messages.

All messages are tagged with thelevel variable. As a result, the tag
parameter is omitted in the listings of the procedures, and is assumed
to be equal tolevel. In other words, messages are always tagged with
the agent’s currentlevel variable value, and only messages whose tag
equals tolevel are extracted in RECEIVE(). The resulting code looks
similar to the common send/receive primitives, but the reader should
be aware of their different semantics.

During the algorithm’s execution, the following message types are
used:

• Join〈sender〉: a request to join an agent. If the receiving agent
sends aJoin as well, an agreement on joining is reached.

• NoJoin: a negative answer to aJoin request.
• Components〈components〉: after agreement on joining has been

reached, the agents use this message in order to inform each other
about their components sets.

• Done〈sender, leader〉: a message from a neighbor notifying that it

State Action

Receive Initial state. Wait for an appropriately tagged message. Upon receiving
such message, dispatch to the corresponding state.

Join_g Send components tog, and go toReceive .
Join_t SendNoJoin to t, and go toReceive .
NoJoin SendJoin to chosen agent, and go toReceive .
Components SendDone messages to all neighbors, and go toReceive .
Done If the updated dynamic neighbors list is empty, sendLeader message to

the representative agent. Go toReceive .
Leader If the reset neighbors list is empty, sendSearch messages to all agents and

go toReceive . Otherwise, go toNoJoin .
Search Final state.

Table 1. Control flow of Algorithm 1.

has performed a join, and which agent has been designated as its
leader.

• Leader〈neighbors, components, single, level〉: one of two mes-
sages (sent by the merging agents) which notify the receiving
agent that it has been selected as a leader at a givenlevel. The
receiving agent merges the received lists ofneighbors andcompo-
nents with its own lists, to get the resulting neighbors and com-
ponents lists. Ifsingle is TRUE, there is only one incomingLeader
message, and the agent “merges” with itself, without the selection
of a leader. The very firstLeader messages which all agents send
to themselves bootstrap the algorithm.

• Search: originates from the top-level agent, and indicates that
the partitioning is over. This message begins the search phase of
DESRS.

An informal proof of the correctness of the partition algorithm
(Algorithm 1) can be constructed as follows: show that Algorithm 1
results in a correct partitioning of agents into a binary tree of groups
(as shown in the example in Figure 2).

The control flow of the algorithm, in a given agent, can be modeled
as shown in Table 1. With the help of this model, there are some in-
variants that can be observed in the group partitioning algorithm’s
flow. First, an agent will not send aDone message, unless it has
found another agent to join with (which will be the same agent in
the extreme case). Also, an agent will not send aLeader message
to the representative agent of the new group, unless it has received
the Done messages from all its neighbors. Since an agent can only
change itslevel in two cases: when sending aLeader message, and
when receiving aLeader message, it is not possible for an agents
to deadlock waiting for an answer to aJoin request from an agent
t. This is true becauset will not change itslevel before receiving a
Done message froms (sinces is one oft’s neighbors).

Moreover, each agent will eventually find an agent to join with,
since it arbitrarily picks an agent to try and join with from agents
to which it is connected with a minimal-weight constraint. Since a
cycle with ever-shrinking weights is not possible, there must exist a
pair of agents, each of which is connected to the other via a minimal-
weight constraint, and thus they will pick each other after a finite
number of attempts during the joining process. After this happens,
these agents are removed from the dynamic neighbors lists of their
respective neighbors, and this argument can be re-applied.

Therefore, in each level all representative agents at that level will
pass through the following events: receiving aLeader message; send-
ing a finite number ofJoin requests, and receiving aNoJoin answer
for each of their requests in a finite time; receiving aJoin answer
from some agentg; exchangingComponents messages withg; send-

ing Done messages to all neighbors; receivingDone messages from
all neighbors, and sending aLeader message. This establishes termi-
nation for Algorithm 1.

The resulting partition is also a correct binary tree. First, each
representative agent is part of the components list which it rep-
resents. Also, an agent receives either twoLeader messages with
single = FALSE from two different agents, with different components
sets, and becomes a new node in the binary partitioning tree. Or, it
receives oneLeader message from itself withsingle = TRUE (which
happens when an agent does not succeed in joining another agent),
and in this case no new node is formed (level is incremented by 1, the
components set remains the same, and the neighbors list is updated).

The binary partitioning tree is essentially built bottom-up, result-
ing in a tree similar to Figure 2. This establishes correctness for Al-
gorithm 1.

3 Search for solutions

In the search phase of DESRS, presented in Algorithm 3, all primi-
tive agents independently initiate empty partial assignments (PAs),
which flow up and down in the hierarchy tree formed during the
group-partitioning phase (Algorithm 1). The growing partial assign-
ments are distinguished by IDs, assigned to them during their initial-
ization as empty PAs.

Each primitive agent which receives anAssignment message, at-
tempts to combine it with compatible values from its own domain,
and send it further. When no compatible value exists, aNogood mes-
sage with a resolved explanation is sent to the “culprit” agent, which
is determined during the resolution process.

The precise flow of messages is as follows. AnAssignment mes-
sage received by a primitive agent is combined to a value of that
agent and sent up, as described above. A representative agent receiv-
ing such a message from one of its child agents sends it either up in
the hierarchy (if the PA covers the whole component), or to the other
child.

When anAssignment message is sent down in the partition hier-
archy, it is continuously forwarded down until it reaches a primitive
agent. Each representative agent randomly decides, to which child
agent the message will be sent.

Nogood messages are sent among primitive agents, in a direction
opposite to the partial assignments growth. When a primitive agent
discovers that a value in its domain is incompatible with a given PA,
the chronologically first conflicting agent in the PA is recorded as the
explanation for this failure. When the domain is emptied, these ex-
planations are united with explanations received inNogood messages
(for the same PA), and the most recent agent in the combined ex-

Algorithm 3 : DESRS-SOLVE(s): Searching for solutions.

Input : agents, output from Algorithm 1, domainD, child
agentsc0,1, primitive child indicatorsprim0,1

Output : a global solution is sent toUSER
Locals : Id-Map[·]
loop foreverdo1

switch RECEIVE() do2
B Continuing Algorithm 1...

caseSearch3
level← s4
SEND(s, Assignment〈s, s, NIL , TRUE〉)5

caseAssignment〈t, id, PA, primitive〉6
if primitive then7

Id-Map[id]← 〈PA,D, /0〉8
else if∃i : t = ci then9

if c1−i ∈ PA then10
SEND(leader, Assignment〈s, id, PA, FALSE〉)11

else12
SEND(c1−i , Assignment〈s, id, PA, prim1−i〉)13

else14
i← RANDOM({0,1})15
SEND(ci , Assignment〈s, id, PA, primi〉)16

caseNogood〈id, exp〉17
〈·, ·,united-exp〉 ← Id-Map[id]18
united-exp← united-exp∪exp19

caseAssignment〈·, id, ·, TRUE〉 ∨ Nogood〈id, ·〉20
〈PA,Values,exp〉 ← Id-Map[id]21
v← NIL22
while v = NIL ∧ Values 6= /0 do23

v← RANDOM(Values)24
Values← Values r{v}25
for (r = w) ∈ PA (left-to-right, neighbors ofs only)26
do

if CHECK(v, r, w) then27
exp← exp∪{r}28
v← NIL29
break30

if v 6= NIL then31
SEND(parent, Assignment〈s, id, 〈PA,(s = v)〉,32
FALSE〉)

else ifexp 6= /0 then33
for r ∈ PA (right-to-left)do34

if r ∈ exp then35
SEND(r, Nogood〈id, exp r{r}〉)36
break37

else38
SEND(USER, Nogood〈id, exp〉)39

planation is designated as the “culprit”. The united explanation (ex-
cluding the “culprit”) is then sent to this agent in aNogood message
[2, 3, 13].

In a problem withn agents,n independent partial assignments can
be grown, withNogoodsback-jumping to failure culprits. The first
PA which grows to the full solution, or results in an emptyNogood,
ends the search process, which is reminiscent of CONCDB [13].

During the execution of the algorithm, the following message
types are in use:

• Assignment〈t, id, PA, primitive〉: a partial solution which is sent
by agentt up in the partition hierarchy. Theid is unique for the
growing PA, which contains the ordered partial assignment. The
boolean fieldprimitive indicates whether the message has been sent
to a primitive agent (a leaf in the group partitioning hierarchy), or
its role as a representative agent (non-leaf).

• Nogood〈id, exp〉: a resolved nogood sent to the “culprit” agent.
The id field is equal to theid in theAssignment messages with the
corresponding (inconsistent) PA, andexp is the resolved explana-
tion, which in DESRS is a set of agents.

Algorithm 1 has been implicitly modified to produce the following
additional output for each representative agent:

• c0,c1: child agents.
• prim0,prim1: whether the corresponding child agent is a primitive

agent (a leaf in the hierarchy).

Note that for solving by DESRS, GROUP-PARTITION() need
not producepairs (the list of constraints between the two sub-
components).

A mapId-Map is maintained in each primitive agent, holding map-
pings fromids to tuples of the form〈PA,values,exp〉. Here,PA is the
partial assignment, as it was received from the parent agent,values
is the current untried subset of values in the current domain, andexp
is the growing explanation, which will be used if and whenvalues
becomes empty.

4 Experimental evaluation

Experimental evaluation of the DESRS algorithm has been con-
ducted using an asynchronous simulator. To simulate asynchronous
agents, the simulator implements agents as Java threads. Threads
(agents) run asynchronously, exchanging messages. After the algo-
rithm is initiated, agents block on incoming message queues and be-
come active when messages are received.

Experiments were conducted on random networks of constraints.
The network of constraints, in each of the experiments, is generated
randomly by selecting the probabilityp1 of a constraint among any
pair of variables (constraint density) and the probabilityp2, for the
occurrence of a violation among two assignments of values to a con-
strained pair of variables (constraint tightness) [8, 9].

Figure 3 compares DESRS to ABT on a set of randomly gener-
ated problems of moderate complexity (n = 10, |D|= 10, p1 = 0.5).
Figure 4 compares the same algorithms on a set of hard random prob-
lems (n = 20, |D|= 10, p1 = 0.4).

We see that DESRS outperforms ABT on all problems. This is
true with respect to both measures of performance — non-concurrent
constraint checks [6] and total number of messages. DESRS per-
forms half the number of NCCCs than ABT for the hardest problem
instances withn = 10 agents. The same is true for problems with
n = 20 agents (Figure 4). The same advantage of a factor of two, for
DESRS over ABT, holds for the total number of messages sent (e.g.,
the network load).

The DESRS algorithm uses multiple search processes to scan
the search space concurrently. Another DISCSP search algorithm
also uses multiple search processes. CONCDB [13] generates search
processes dynamically during search. Figures 3, 4 present also the
results of comparing DESRS to CONCDB. The performance of
DESRS is similar to CONCDB on then = 10 agents problems with
respect to the number of non-concurrent constraint checks (Fig-
ure 3(a)) [6]. On the other hand, DESRS performs about twice the
number of constraint checks of CONCDB in the phase transition re-
gion of then = 20 problems set (Figure 4(a)), and uses more mes-
sages than CONCDB in all problems.

It is interesting to investigate the impact of the partitioning heuris-
tic on the performance of the search algorithm. Figure 5 presents a
comparison of DESRS against ANTIDESRS — algorithm similar to

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DesRS, ABT, ConcDB

DesRS
ABT

ConcDB

(a) Non-concurrent constraint checks.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DesRS, ABT, ConcDB

DesRS
ABT

ConcDB

(b) Total number of messages.

Figure 3. Comparing DESRS with ABT and CONCDB on random prob-
lems with 10 agents, domain size of 10, andp1 = 0.5.

DESRS, but with the weights controlling the partitioning reversed
(during the groups partitioning phase). That is, instead of pushing
hard constraints down in the hierarchy, they are pushed up during the
execution of GROUP-PARTITION().

It is easy to see that the difference, especially in terms of con-
straint checks, is large — good partitioning hierarchy is vital to the
performance of DESRS.3

5 Discussion

A new search algorithm for distributed constraint problems
(DISCSPs) is presented. The new algorithm uses a hierarchy of
groups of agents to partition the problem. Solutions are generated
by multiple concurrent search processes, all coordinated on the hier-
archy of groups. Multiple agents initialize partial solutions concur-
rently and send them to group leaders. Leaders of groups of agents
coordinate the generation of each solution by determining the groups
that are merged with partial solutions, to form larger solutions.

3 The results for DESRS differ from those in Figure 4 due to a different ex-
perimental environment.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DesRS, ABT, ConcDB

DesRS
ABT

ConcDB

(a) Non-concurrent constraint checks.

0

50000

100000

150000

200000

250000

300000

350000

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DesRS, ABT, ConcDB

DesRS
ABT

ConcDB

(b) Total number of messages.

Figure 4. Comparing DESRS with ABT and CONCDB on random prob-
lems with 20 agents, domain size of 10, andp1 = 0.4.

One can think of the hierarchical structure of groups as a means
of defining a partial order of search for the multiple search pro-
cesses. The resulting algorithm performs better than asynchronous
backtracking (ABT). It performs half the number of non-concurrent
constraints checks than ABT for hard instances of randomly gener-
ated DISCSPs. It also sends half the number of messages than ABT
for the same problems.

Comparing DESRS to the best performing concurrent search al-
gorithm, CONCDB, is less successful. For random DISCSPs with
20 agents, the run-time of DESRS is longer than that of CONCDB.
However, one has to bear in mind that CONCDB takes advantage
of communication among search processes. Specifically, such com-
munication is used in terminating processes because of dead-ends
discovered by other search processes [13]. This option is in principle
possible also for DESRS. Leaders of groups could inform the search
processes passing through them about discoveredNogoodsand ter-
minate some of the partial assignments. This potential improvement
of DESRS is left for a future study.

Asynchronous Partial Overlay(APO) is a recently introduced al-
gorithm for solving DISCSPs [4]. It uses a method ofcooperative
mediation. In APO, some of the agents act as mediators. Mediators

0

100000

200000

300000

400000

500000

600000

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DesRS and AntiDesRS

DesRS
AntiDesRS

(a) Non-concurrent constraint checks.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DesRS and AntiDesRS

DesRS
AntiDesRS

(b) Total number of messages.

Figure 5. Comparing DESRS with ANTIDESRS on random problems with
20 agents, domain size of 10, andp1 = 0.4.

construct small overlapping portions of the constraints network and
solve them. As the problem solving unfolds, mediators increase the
size of their subproblems [4]. The approach taken by the DESRS al-
gorithm in the present paper is principally different. The proposed
hierarchical search algorithm uses a distributed computation in order
to generate a good partition of the overall problem. We have shown
experimentally that the group partitioning phase is critical for the per-
formance of DESRS. However, partitioning is completely indepen-
dent from the search phase. Moreover, agents in hierarchical search
do not centralize subproblems. Instead, partial assignments are for-
warded to higher levels in the partition hierarchy.

Distributed Pseudotree Optimization(DPOP) is a recent algo-
rithm for DISCSP optimization [7]. DPOP builds a depth-first
traversal tree from an elected leader. It subsequently incrementally
computes all partial solutions by propagatingutility andvaluemes-
sages in the resulting tree. In DPOP, the DFS and the optimization
phases are not independent: absence of constraint links between the
tree branches is a requirement of the algorithm. Number of messages
is linear, but their size is exponential in theinduced widthof the
problem. The dynamic programming approach taken by DPOP is
very different from DESRS.

Finally, the hierarchy of groups can serve other purposes, unre-
lated to distributed constraint solving. The group partitioning phase
is independent of the search phase. The input to the former is spec-
ified by a connected undirected graph of agents with weighted con-
nections (edges), and unrestricted communication between agents. A
method of combining weights of several edges between groups of
agents is a part of the input. The output of the group partitioning is
specified by the established hierarchy of groups, where some of the
agents are designated as representative agents (leaders). This hierar-
chy has a bias towards connections (primitive of aggregative, com-
bining several edges) with high weight remaining at the low levels of
the hierarchy.

The process of partitioning into a hierarchy of groups can be ap-
plied to other domains, where connectivity plays a primary role. An
example of such a domain is the area of social networks [1]. Con-
sider a network of people, where mutual ties are represented by edges
with a weight in some interval. These edges can, for example, repre-
sent amounts of phone conversations between pairs of people. Such
a network will exhibit the properties identified above as necessary
for Algorithm 1. Moreover, since the algorithm is concurrent and
consumes few resources, it can be scheduled to run on all agents as
frequently as necessary in order to accommodate social network up-
dates. Interesting applications of resulting hierarchies and emerging
group leaders can be considered.

REFERENCES
[1] John Barnes, ‘Class and committees in a Norwegian island parish’,Hu-

man Relations, 7, 39–58, (February 1954).
[2] Christian Bessière, Arnold Maestre, Ismel Brito, and Pedro Meseguer,

‘Asynchronous backtracking without adding links: A new member
in the ABT family’, Artificial Intelligence, 161(1–2), 7–24, (January
2005).

[3] Matthew Ginsberg, ‘Dynamic backtracking’,Artificial Intelligence Re-
search, 1, 25–46, (August 1993).

[4] Roger Mailler and Victor Lesser, ‘Using cooperative mediation to
solve distributed constraint satisfaction problems’, inProceedings of the
Third International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, volume 1, pp. 446–453, New York, New York, USA,
(August 2004).

[5] Amnon Meisels, ‘Distributed constraints: Algorithms, performance,
communication’, inCP-2004: Tutorials, Toronto, Canada, (September
2004).

[6] Amnon Meisels, Eliezer Kaplansky, Igor Razgon, and Roie Zivan,
‘Comparing performance of distributed constraints processing algo-
rithms’, in Proceedings of the Third Workshop on Distributed Con-
straint Reasoning, pp. 86–93, Bologna, Italy, (July 2002).

[7] Adrian Petcu and Boi Faltings, ‘A scalable method for multiagent con-
straint optimization’, inProceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pp. 266–271, Edinburgh,
Scotland, (August 2005).

[8] Patrick Prosser, ‘An empirical study of phase transitions in binary con-
straint satisfaction problems’,Artificial Intelligence, 81(1–2), 81–109,
(March 1996).

[9] Barbara Smith and Martin Dyer, ‘Locating the phase transition in binary
constraint satisfaction problems’,Artificial Intelligence, 81(1–2), 155–
181, (March 1996).

[10] Makoto Yokoo and Katsutoshi Hirayama, ‘Algorithms for distributed
constraint satisfaction: A review’,Autonomous Agents and Multi-Agent
Systems, 3(2), 185–207, (June 2000).

[11] Roie Zivan and Amnon Meisels, ‘Concurrent backtrack search on DisC-
SPs’, in Proceedings of the Seventeenth International Florida Artifi-
cial Intelligence Research Symposium Conference, pp. 776–781, Miami
Beach, Florida, USA, (May 2004).

[12] Roie Zivan and Amnon Meisels, ‘Concurrent dynamic backtracking for
distributed CSPs’, inPrinciples and Practice of Constraint Program-
ming — CP 2004, volume 3258 ofLecture Notes in Computer Science,
pp. 782–787, Toronto, Canada, (January 2004).

[13] Roie Zivan and Amnon Meisels, ‘Concurrent search for distributed
CSPs’,Artificial Intelligence Journal, 170(4–5), 440–461, (April 2006).

	Introduction
	Group partitioning
	Search for solutions
	Experimental evaluation
	Discussion

