
Ben-Gurion University of the Negev

Faculty of Natural Sciences

Department of Computer Science

Hierarchical Search on DisCSPs

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN COMPUTER SCIENCE

Michael Orlov (orlovm@cs.bgu.ac.il)

July 2006

Subject: Hierarchical Search on DisCSPs

Author: Michael Orlov

Advisor: Prof. Amnon Meisels

Department: Computer Science

Faculty: Natural Sciences

Organization: Ben-Gurion University of the Negev

Signatures:

Author: Michael Orlov Date

Advisor: Prof. Amnon Meisels Date

Dept. Committee Chairman Date

I

Preface

Two new distributed search algorithms for Distributed CSPs are proposed.
In one algorithm, search is performed concurrently on disjoint parts of the

global search space, by agents that constitute these parts. Agents form a hierarchy
of groups and each group generates consistent partial solutions. Partial solutions
are produced concurrently and are combined into consistent global solutions by
agents that are higher in the hierarchy.

In another algorithm, concurrent independent backtracking search processes
grow partial assignments along a hierarchy of agent groups, with each agent partic-
ipating in multiple search processes. Stochastic choices for the order of assigning
agents are taken after backtracking, securing the growing partial assignments from
stalling in local minima.

The first part of both algorithms partitions the distributed constraint network
into a binary tree of groups. After completing the partition, the hierarchy of groups
starts to produce partial solutions. The distributed partition algorithm uses a heuris-
tic that selects to join neighbors that are strongly constrained, into groups. This is
done concurrently at all levels of the hierarchy. The result is a new and special
effective order of assigning agents, for both algorithms.

In DISHS, partial solutions produced at one level are combined into larger
partial solutions by agents at the next higher level. The process stops when the
top-level agent, the leader of all groups, reports either a solution or a failure.

In DESRS, independent partial solutions are grown by agents, each partial so-
lution is sent higher up in the hierarchy, ultimately resulting in the top-level agent
producing a solution, or in some agent producing an empty Nogood.

3

4

Acknowledgements

I would like to express my utmost gratitude to my advisor, Prof. Amnon Meisels,
for the scientific and moral support throughout our work and research.

I would also like to thank Marina for enduring this long period of my life. :)

5

6

Contents

1 Introduction 9

2 Background 11
2.1 Constraint Satisfaction Problems (CSPs) 11
2.2 Distributed CSPs . 13
2.3 Asynchronous Backtracking . 15

3 Distributed Hierarchical Search (DISHS) 17
3.1 Overview of DISHS . 17
3.2 Constraint checks bounds . 20

4 Partitioning into a Hierarchy of Groups 23
4.1 Partition survey . 24
4.2 Algorithm primitives . 24
4.3 Detailed description . 26
4.4 Algorithm correctness . 30
4.5 A partition example . 31

5 Concurrent, Hierarchical Search 35
5.1 DisHS survey . 37
5.2 Algorithm primitives . 38
5.3 Algorithm analysis . 39
5.4 Algorithm optimization . 40

5.4.1 On-demand partial solutions 40
5.4.2 Cached answers . 41

5.5 Algorithm correctness . 44
5.6 Experimental evaluation . 45

6 Descending Requirements Search 49
6.1 General description . 49
6.2 DesRS survey . 50
6.3 Algorithm primitives . 51
6.4 DESRS algorithm in detail . 51
6.5 Algorithm correctness . 53

7

8 CONTENTS

6.6 Experimental evaluation . 54
6.7 Comparison with DISHS . 57
6.8 Discussion . 57

7 Other Applications of Partitioning 63

8 Conclusions 67

A A Group Partitioning Messages Log 69

B Operations on Complete Binary Tree 75

Chapter 1

Introduction

Distributed search algorithms for distributed constraint satisfaction use the con-
currency of multi-agent execution in many forms. One popular way of concur-
rency is to let all agents participate in a single backtracking search, by operating
asynchronously. In asynchronous backtracking (ABT) [4, 25], agents assign their
variables asynchronously and check for consistency by sending forward ok? mes-
sages. Backtracking operations are performed by sending Nogoods, and for the
correctness of the algorithm a fixed order of agents is essential [25].

Another form of achieving concurrency for DISCSP search is to use multiple
search processes. Concurrent dynamic backtracking (CONCDB) utilizes multiple
concurrent search processes on a distributed CSP [31–33]. CONCDB maintains a
dynamic number of backtracking search processes and generates an efficient con-
current performance [33].

The present study proposes to use cooperation among multiple concurrent search
processes, each searching a partial search space. The proposed algorithm uses a
hierarchy of groups of agents that search concurrently for partial solutions. In dis-
tributed hierarchical search (DISHS) groups of agents communicate in order to
maintain consistency and arrive at a consistent solution. Each group in the con-
structed hierarchy is represented by one of its members. The representative agents
(i.e., leaders) compute the consistent partial solutions for the agents that form the
group. Naturally, an important part of both hierarchical search algorithms is the
smart partition of the agents in the hierarchy of groups.

Hierarchical search is composed of two phases. In the first phase, agents gener-
ate a hierarchy of groups and select representatives for each group. Representative
agents maintain partial solutions of the group they represent and connections with
other groups. Solutions are generated within groups and become larger by merg-
ing partial solutions. In the second phase of distributed hierarchical search, the
hierarchy of groups of agents searches concurrently for multiple solutions of the
DISCSP.

The grouping of agents generates partial orders of assignments among agents.
The hierarchy takes the form of a binary tree. In the DISHS algorithm group

9

10 CHAPTER 1. INTRODUCTION

solutions are generated by the group leaders. Agents that are leaders combine
at most two partial solutions. In the DESRS algorithm solutions are generated
by passing compatible partial solutions among all agents. Here too, the grouping
results in a partial order among agents which incrementally generate the solutions.

Two forms of hierarchical search (HS) are presented in this study. In one ver-
sion, partial solutions are combined by the leaders of each group. The leaders
check consistency of their combined partial solutions by communicating with con-
straining agents in other groups. In general, agents perform two tasks concurrently.
Each agent responds to constraints checking messages from leaders of its enclosing
groups, checking its constraints with other agents. Agents that are leaders combine
partial solutions into larger ones.

The other version of distributed hierarchical search generates only compati-
ble partial solutions. Agents extend partial solutions generated by other agents or
groups. The leaders of groups at all levels route partial solutions of one of their
components to their other components, to be extended in a consistent way. This
form of hierarchical search is called Descending Requirements Search (DESRS).
Requirements for extending partial solutions are being routed down (i.e., descended)
by the leaders of groups.

Hierarchical search does not impose a total order on the agents or variables of
the problem, just the partial order that is implicit in the partition into groups. It
is complete and correct and provides multiple solutions to the DISCSP. By main-
taining multiple search processes concurrently, search can be made more efficient,
especially if multiple solutions are needed.

Descending requirements search maintains multiple concurrent search proce-
dures, that are coordinated within each group (level) in the hierarchy by the leader
of that group.

Both algorithms are evaluated experimentally on randomly generated DISCSPs [15–
17]. They are compared to existing search algorithms — ABT [25], CONCDB [33],
and the DESRS algorithm is shown experimentally to perform better than ABT on
all problems, and to perform similar to CONCDB on problems of limited complex-
ity.

Chapter 2 presents CSPs, DISCSPs and distributed search algorithms for DISCSPs.
Chapter 3 presents an overview of hierarchical search, including a theoretical treat-
ment of constraint checks bounds. Chapter 4 describes the first phase of hierarchi-
cal search — partitioning of agents into a hierarchy of groups. The distributed
partitioning algorithm is of interest by itself. This is discussed in short in Chap-
ter 7. Chapter 5 describes the solving phase of DISHS. Chapter 6 describes the
requirements-based solving phase, the Descending Requirements Search. In Chap-
ter 7, possible applications of the group partitioning algorithm are discussed. Chap-
ter 8 presents our conclusions.

Chapter 2

Background

2.1 Constraint Satisfaction Problems (CSPs)

Constraint networks have been introduced two decades ago, and have been used
to represent a wide range of problems, from scheduling problems to VLSI layout
design. Applying constraint processing to timetabling problems, from scheduling
courses at the university to staffing jobs and shifts in modern work places, is an
interesting set of applications [1, 11, 22]. All of these problems share a common
representation which is very general — constraint networks (CNs), or constraint
satisfaction problems (CSPs) [7, 8, 21]. A field of growing interest is that of dis-
tributed constraints satisfaction problems (DISCSP).

Constraints satisfaction problems (CSPs) have been studied for many years.
CSP is a well known NP-complete problem, and its implementations are often
used in order to solve problems such as timetabling. A CSP can be viewed as a
tuple 〈X ,D,C〉, where X is a finite set of variables x1,x2, . . . ,xm, and D is a set of
domains D1,D2, . . . ,Dm. Each domain Di contains the finite set of values which
can be assigned to variable Xi. C is a set of relations (constraints) that specify
for each value v j in Di, in what cases it cannot be assigned to variable Xi. The
most commonly used constraints are binary constraints which define for every two
variables xi and x j a subset of the Cartesian product of their domains Di ×D j.
In that sense, constraints define the allowed pairs of values among every pair of
constrained variables. A solution to the CSP is an assignment of a value from each
variable’s domain to the respective variable, that does not violate any constraints
from C [8, 21].

In standard (centralized) CSPs, all the problem’s data — including variables,
domains and constraints, are accessible by a single computer (agent) that searches
for a consistent solution to the problem. A search on a CSP that does not contain
such a solution ends by declaring the CSP as unsolvable.

As an example of a CSP, one can take the currently popular Sudoku puzzles.
The following definition is given in [18].

11

12 CHAPTER 2. BACKGROUND

Definition 1. A Sudoku square of order n consists of n4 variables formed into a
n2×n2 grid with values from 1 to n2 such that the entries in each row, each column
and in each of the n2 major n×n blocks are alldifferent.

7 5

4 83 2

1 6

4

7 9

2

8

3 1

7

5

8 4

7

3 2

6 9

Figure 2.1: A Sudoku puzzle example (rated at easy-medium difficulty level).

Figure 2.1 shows an instance of such puzzle, where the purpose is to find a
consistent Sudoku square of order 3. This instance can be formally described as a
tuple 〈X ,D,C〉, where X = {x1,1, . . . ,x9,9} is a set of 81 variables which correspond
to the 81 cells in the grid, and D = {D1,1, . . . ,D9,9} is a set of domains, where the
domains of the empty cells equal {1, . . . ,9}, and the domains of the filled cells are
singletons with just the given number. C contains the 27 alldifferent constraints, as
described in Definition 1. Note that the constraints are not binary.

Algorithm evaluation is in many cases performed on randomly generated bi-
nary constraint satisfaction problems [17]. The two main parameters used in prob-
lem generation are constraint density p1 and constraint tightness p2. Constraint
density is the probability of a constraint between two variables, and constraint

2.2. DISTRIBUTED CSPS 13

tightness is the probability of a conflicting pair of values in a given constraint.1

2.2 Distributed CSPs

Distributed constraint satisfaction problems (DISCSPs) are composed of agents,
each holding its local constraint network, that are connected by constraints among
variables of different agents. Agents assign values to variables, attempting to gen-
erate a locally consistent assignment that is also consistent with all constraints
between agents (cf. [20, 23]). To achieve this goal, agents check the value assign-
ments to their variables for local consistency and exchange messages with other
agents, to check consistency of their proposed assignments against constraints with
variables owned by different agents. Following common practice, it is assumed that
an agent can send messages to any one of the other agents [4, 6, 23].

Distributed CSPs are an elegant model for many every day combinatorial prob-
lems that are distributed by nature. Take for example a large hospital that is com-
posed of many wards. Each ward constructs a weekly timetable assigning its nurses
to shifts. The construction of a weekly timetable involves solving a constraint sat-
isfaction problem for each ward. Some of the nurses in each ward are qualified
to work in the emergency room. Hospital regulations require a certain number of
qualified nurses (e.g. for emergency room) in each shift. This imposes constraints
among the timetables of different wards. Assigning an unqualified nurse to some
shift is acceptable only if there are enough qualified nurses assigned to that shift in
the other wards. This results in a complex Distributed CSP [11, 12, 20].

A search procedure for a consistent assignment of all agents in a DISCSP is a
distributed algorithm. All agents cooperate in the search for a globally consistent
solution. The distributed nature of a search algorithm on DISCSPs produces many
additional features to those of standard CSPs. The correctness and termination
conditions are typically more complex on DISCSPs than in standard backtracking
search like CSP [24, 25]. The appropriate performance measures for distributed
constrained search must take concurrency into account [13, 16]. Since agents in
distributed search algorithms communicate by message passing, the impact of mes-
sage delay on the performance of different algorithms must also be investigated.
These are just few features that come up in DISCSPs.

The solution involves assignments of all agents to all their variables and ex-
change of information among all agents, to check the consistency of assignments
with constraints among agents. The state of the search at a specific step is defined
by the current assignments held by agents for their variables. In some algorithms
such as Asynchronous Backtracking [23] and Distributed Breakout [29], all agents
hold assignments during the search while in others such as Synchronous Backtrack-
ing [23] the state is incrementally constructed and some of the agents do not hold

1These definitions deviate slightly from Prosser [17], who defines p1 and p2 as the proportion of
constraints in the graph, and the proportion of conflicting value pairs in each constraint, respectively,
and not as probabilities.

14 CHAPTER 2. BACKGROUND

an assignment for their variables through some parts of the search. In concurrent
search agents hold a varying number of multiple assignments, as part of multiple
search processes [31, 32]. The present study includes two versions of hierarchical
search and agents hold a varying number of assignments.

In a Distributed CSP (DISCSP), the variables of a CSP are distributed among
a set of agents A. each variable xi of X is assigned to an agent a j which is one of
the agents in set A. We refer to a variable xi of a j as owned by the agent A j. In
DISCSPs the constraints set C contains two types of constraints:

1. Intra constraints: constraints between variables, owned by the same agent.

2. Inter constraints: constraints between variables, owned by different agents.

Intra constraints are solved by each agent locally, using centralized CSP meth-
ods. Inter constraints must be solved via some cooperation between the constrained
agents. In order for two agents ai and a j, which hold variables with constrained
values in their domains, to assign values to their variables, at least one of them has
to find out if the assignment value it chose for its variable is consistent with the
other agent’s assignment. This can be done only if the agent ai holding the con-
straint (without loss of generality) receives a message from agent a j that contains
a j’s assignment, and finds an assignment value for its variable, consistent with the
assignment of a j. This means that in order to find a consistent assignment for
agents with constrained variables, one of the following properties must hold:

1. The agents’ order of search assures that the agent holding the constraint will
be obliged to find an assignment consistent with the assignment of the agent
not holding the constraint.

2. Every agent whose variable is involved in some constraint R ∈ C, always
holds the constraint R.

Following all former studies on DISCSPs, agents communicate by sending
messages. The delay of each message is assumed to be finite. The content of
messages is not homogeneous in all algorithms. In the most common approach,
messages contain assignments of values to agents’ variables. Agents can send
messages to all constraining agents [4, 23]. In most studies a relaxed assumption
is used, that all agents can communicate with all other agents. In some algorithms
agents send messages only to agents which are their neighbors in the constraints
network (agents they have inter constraints with) [4, 23].

In most algorithms for solving DISCSPs there are two basic types of messages:

1. Messages that are sent by agents that have succeeded to find an assignment
for their local constraints network and ask other agents to check inter con-
straints against the assignment received (ok? message [28], info_val mes-
sage [10]).

2.3. ASYNCHRONOUS BACKTRACKING 15

2. Messages that are sent by agents that fail to find an assignment for their
local constraints network, that is consistent with their view of other agents’
assignments. These messages essentially request other agents to replace their
current assignment (Nogood message [28], backtrack bt message [10]).

A solution to a Distributed CSP is a function that assigns a single value from
each variable’s domain to the variable. A “no solution” declaration is returned for
DISCSPs with no solution to satisfy the constraints in C.

Most studies on DISCSPs restrict themselves to DISCSPs in which each agent
owns exactly one variable. This choice simplifies the presentation of the algorithms
and has two major justifications:

• An agent holding k variables can be simulated as k virtual agents.

• The agent’s k variables can be replaced by one variable whose domain in-
cludes all the consistent tuples of assignments for the k replaced variables.

2.3 Asynchronous Backtracking

The Asynchronous Backtracking algorithm (ABT), first presented by Yokoo et al.
[27], was constructed to remove the drawbacks of Synchronous Backtracking (sim-
ple chronological backtracking) algorithm by allowing agents to run concurrently
and asynchronously. In all variants of ABT, the algorithm is presented for DISCSPs
in which each agent holds exactly one variable. Each agent assigns its variable, and
communicates the assignment it made to the relevant agents. In the ABT algorithm
a total order of priorities is defined among agents, and therefore for each binary
constraint only the agent with the lower priority needs to hold the constraint. A
link in the constraints network is directed from the agent with the higher priority
to the agent with the lower priority among the two constrained agents.

Agents instantiate their variables concurrently, and send their assigned value to
the agents that are connected to them by outgoing links. After that, the agents wait
for and respond to messages.

After each update of its assignment, an agent sends its new assignment through
all outgoing links. An agent which receives an assignment (the lower priority agent
of the link) tries to find an assignment to its variable which does not violate a
constraint with the assignment it received.

The ok? messages carry an assignment of an agent. When an agent Ai receives
an ok? message from agent A j, it places the received assignment in a data structure
called Agent_View, which holds the last assignment Ai received from higher prior-
ity neighbors such as A j. Then Ai checks if its current assignment is still consistent
with its Agent_View. If not, Ai searches its domain for a new consistent value. If it
finds one, it assigns its variable and sends ok? messages to all agents linked with
it, with lower priority. Otherwise, Ai backtracks.

The backtrack operation is executed by sending a Nogood message that con-
tains an inconsistent partial assignment to the agent with the lowest priority among

16 CHAPTER 2. BACKGROUND

the agents whose assignments are included in the inconsistent tuple (i.e., the No-
good). Agent Ai that sent a Nogood message to agent A j assumes that A j will
change its assignment, therefore Ai removes the assignment of A j from its Agent_View,
and makes an attempt to assign its variable a value which is consistent with the re-
freshed Agent_View.

The issue of how to resolve the inconsistent partial assignment (using Nogoods
sent in backtracking messages) evolved through the different versions of ABT. A
shorter Nogood would mean backjumping further up in the search-tree, but finding
such a short Nogood can be wasteful in computational time. In the early ver-
sions [26, 27], Yokoo suggests sending the complete Agent_View as a Nogood.
Agent_View might be in many cases not a minimal Nogood, i.e., it might contain
assignments that if removed, the partial assignment remaining still eliminates all
values in the agents domain. In later versions of the ABT algorithm [4], a minimal
Nogood is resolved using Dynamic Backtracking (DB) method [9].

In Dynamic Backtracking, an agent Ai that receives a Nogood adds it to its
list of constraints. Since the Nogood can include assignments of some agent A j,
which Ai was not previously constrained with, Ai, after adding A j’s assignment
to its Agent_View, sends a message to A j asking it to add Ai to its list of outgoing
links. A j, after adding the link, sends an ok? message to Ai each time it reassigns its
variable. After storing the Nogood, Ai checks if its assignment is still consistent.
If it is, a message is sent to the agent the Nogood was received from. This re-
sending of the assignment is crucial, since as mentioned above, the agent sending
a Nogood assumes that the receiver of the Nogood replaces its assignment. If the
old assignment is inconsistent, Ai tries to find a new assignment as done when an
ok? message is received.

The algorithm ends successfully when all the agents are idle (i.e., their assign-
ments are consistent with their respective Agent_Views) and no message that will
change any agent’s Agent_View (an ok? message) or add to agent’s constraints (a
Nogood message) is yet to be received by any agent in the DISCSP. In such a
case the assignments held by the agents represent a solution to the DISCSP. The
algorithm fails if some agent creates an empty Nogood.

Chapter 3

Distributed Hierarchical Search
(DISHS)

3.1 Overview of DISHS

The idea at the basis of hierarchical search is to prune inconsistent partial assign-
ments by concurrent processes of computation. That is, consistent partial assign-
ments are produced concurrently by groups of agents, and then united into larger
consistent assignments. Agents are divided into a hierarchy, where each agent be-
longs to groups at different levels. Each group has a level, where groups at level
i are composed of zero or two groups of level j < i. The result is a binary tree,
where all non-leaf nodes have two children. There is exactly one group containing
all agents (i.e., the entire DISCSP).

The particular type of (binary) hierarchy that is at the center of the present
study has no special meaning. It mainly reflects the relative ease of performing a
distributed binary partition. More complex partition algorithms could in principle
be designed, producing a hierarchy of groups that is not a binary tree.

Each group has an agent that stores and manipulates the consistent partial as-
signments of the group. This agent is termed the representative agent, or the leader,
of the group. Messages containing consistent partial assignments of a group are
sent by the group’s representative to the leader of the next higher level. In order to
construct consistent partial solutions, each leader communicates with its group, ei-
ther for checking consistency of assignments (Chapter 5), or to request generation
of consistent partial solutions (Chapter 6).

All hierarchical search algorithms first partition the DISCSP into groups of
agents that form a hierarchy. This is done by merging pairs of agents or pairs of
groups into higher level groups (Algorithm 4.1). After completing the partition,
search for a globally consistent solution is performed by merging partial solutions
of groups into solutions of higher level groups. Solutions to the highest level group
are global solutions to the DISCSP.

Consider the constraints network in Figure 3.1. Note that there is only one

17

18 CHAPTER 3. DISTRIBUTED HIERARCHICAL SEARCH (DISHS)

a

be

f

d

c

g j

i

h

Figure 3.1: Constraints graph with 10 nodes. Edges represent binary constraints.

constraint between the two groups {a,b,c,d,e} and { f ,g,h, i, j}. As a result, the
merging of consistent partial assignments to these two particular groups will in-
volve checking only this single constraint (connecting agents a and f). A possible
partition for this constraints network is given in Figure 3.2(a), which also specifies
the number of constraints between neighboring groups. At level 0 of the tree in
Figure 3.2(a) there are 6 agents. Three of the groups in level 1 include 2 agents
each, and the other three are composed of a single agent — {g}, {h}, {i}. There
are 4 groups at level 2: {a,b,c,d}, {e}, { f , j,g}, {h, i}. There are 2 groups at level
3, and, the top-level group is at level 4.

The partitioning process starts with all agents at level 0. Pairs of agents are
merged into level-1 groups, and pairs of level-i groups are merged into level i + 1
groups. If an agent or a group is unable to merge with another group at some
level, it becomes a group of one level higher. In this higher level, it is the only
component. The root of the binary tree that is formed by the partition represents
the complete DISCSP.

Note that at a first glance, it may seem that the partitioning shown in Fig-
ure 3.2(a) is actually “bad”, in the sense that pairs of agents or groups selected at
the lower levels in the hierarchy are not the most constrained. This illusion stems
from the general situation in which bigger groups have a greater total number of
constraints between them. This is not true for the number of constraints per agent.

During the partitioning process each generated group designates one of its
members to be a leader of the group. Since the partition follows the structure of a
binary tree, each agent can be a representative of a single group. In other words, for
n agents at most n−1 can be leaders. An example assignment of leaders is shown
in Figure 3.2(b). Agent c is the leader of a group with 4 components. It has two
subgroups whose leaders are agents a and d. At the solving stage of the DISHS
algorithm, agent i generates partial solutions by merging the solutions produced by
its two subgroups. In Figure 3.2, the partial solutions are sent to agent i by agent f

3.1. OVERVIEW OF DISHS 19

1

3 3

2 e 2 1

1 1

a b c d

1 g

f j

h i

(a) Nodes show the number of constraints connecting the merged
groups.

e

a i

c e f h

a d

a b c d

j g

f j

h i

(b) A representative agent is responsible for each group.

Figure 3.2: Partitioning of the constraints graph of Figure 3.1.

20 CHAPTER 3. DISTRIBUTED HIERARCHICAL SEARCH (DISHS)

(which leads { f , j,g}) and agent h (which leads {h, i}).
Merging of two partial solutions can be performed either by the leader (algo-

rithm DISHS in Chapter 5), or by the component following a request and a delivery
of one of the partial solutions by the leader (algorithm DESRS in Chapter 6).

Every agent performs two independent tasks. As a group representative it con-
trols the production of consistent partial assignments of its group. As a local con-
straints network, it responds to constraint check queries, or to requests for partial
solution extensions. Each group representative combines solutions of its children
in the partition hierarchy into a consistent assignment for its group. Ultimately, the
root node agent produces globally consistent solutions. Chapters 5 and 6 present
the two versions of hierarchical search. There are, in principle, two main ways
to merge partial solutions. One way is for the leader to merge two partial solu-
tions that were produced independently by its subgroups. Another way is for the
leader to request its subgroups to complete partial solutions produced by the other
subgroups. This approach is presented as the descending requirements search al-
gorithm (DESRS) in Chapter 6.

3.2 Constraint checks bounds

Let us look closer at the partitioning of agents into a binary hierarchy. The main
goal of the partition is the parallelization of partial solutions generation. One of the
desired properties of the partition is that inconsistencies will be detected as early as
possible during the search phase. This helps to reduce the number of inconsistent
partial solutions combination attempts in upper levels of the hierarchy. For both of
the hierarchical search algorithms, one can intuitively think of this as a heuristic
for reducing thrashing. Computationally, this reduces the number of constraint
checks that are performed during each combination attempt. To achieve partitions
with this feature, one can use a heuristic function to help select the group to merge
with. The heuristic that will be used in the present implementation is based on the
following definition.

Definition 2. The weight of a constraint between two variables is the probability
that a random pair of values of these variables is not in conflict.

Definition 3. A virtual constraint between two groups of variables is the set of all
constraints between two agents from both groups.

Definition 4. The weight of a virtual constraint between two groups of variables is
the probability that a random pair of partial assignments of these groups does not
cause any pair of variables from both groups to be in conflict.

The weight is in essence the reverse tightness of a constraint [17]. Conse-
quently, instead of using the number of constraints between group of agents (as
was done in Figure 3.2(a)), the weight of a virtual constraint between two groups
of agents is approximated by multiplying the weights of the involved constraints.

3.2. CONSTRAINT CHECKS BOUNDS 21

A representative agent which combines S1 and S2 solutions from its child agents,
and which has a virtual constraint weight w, will expect to produce wS1S2 solutions
for its parent in the hierarchy, assuming independence of constraints. Note that the
weight is always in the [0,1] range.

In order to minimize the expected number of constraint checks performed
during the combining of partial solutions, constraints are ordered by increasing
weights.1 Consider a composite group with k constraints between its child sub-
groups, with virtual constraint weight w. We now calculate a bound on the expected
number of constraint checks performed when combining two partial solutions.

Lemma 3.2.1. A composite group with k constraints between its child subgroups,
with a virtual constraint weight w, the expected number of consecutive constraint
checks performed while combining two partial solutions is bounded by

1+w(k−1)≤ Ek(w)≤ 1−w
1− k
√

w
(3.2.1)

assuming that the constraints are mutually independent, and that the constraint
checks are performed in the order of increasing constraint weights.

The upper bound is tight if the constraints have equal weight. The lower bound
is tight if ∀1<i≤k wi = 1.

Proof. Let us denote the k constraints composing w as w1, . . . ,wk. By Definition 2,
w = ∏

k
i=1 wi.

Assuming that the constraints are independent, and since the constraint checks
stop with the first check that fails, the expected number of constraint checks Ek(w)
is given by

Ek(w) =
k

∑
i=1

i
(i−1

∏
j=1

w j

)
(1−wi)+ kw =

k

∑
i=1

i−1

∏
j=1

w j (3.2.2)

where
(
∏

i−1
j=1 w j

)
(1−wi) is the probability that the first i− 1 constraint checks

succeeded, after which the ith check failed.
That is,

Ek(w) = (1−w1)+2w1(1−w2)+ . . .+ kw1 · · ·wk−1(1−wk) (failure)

+ kw1 · · ·wk (success)

= 1+w1 +w1w2 + . . .+w1 · · ·wk−1

Since the weights are ordered by increasing weight, by Lemma 3.2.2 we have:

Ek(w)≤
k

∑
i=1

w
i−1

k =
k−1

∑
i=0

(
k
√

w
)i =

1−w
1− k
√

w

1This point becomes quite moot when the constraint checks are not performed by the representa-
tive agent itself. However, during the representative agent selection, agents which are incident on a
maximal number of constraints are preferred — see Algorithm 4.2.

22 CHAPTER 3. DISTRIBUTED HIERARCHICAL SEARCH (DISHS)

In case of equal constraint weights, ∏
i−1
j=1 w j = w

i−1
k , and the inequality turns

into equality, making the upper bound tight.
Noting that ∀1≤ j≤k−1 ∏

j
i=1 wi≥w establishes the lower bound. In a case where

all constraint weights except the first are equal to 1, w = w1 and the lower bound is
easily seen to be equal to Ek(w) from (3.2.2).

Lemma 3.2.2. Consider 0 ≤ w1 ≤ . . . ≤ wk ≤ 1 for k ≥ 1, where ∏
k
i=1 wi = w.

Then,

∀0≤ j≤k

j

∏
i=1

wi ≤ w
j
k (3.2.3)

Proof. For convenience, we assume that w1 > 0, since the lemma clearly holds for
cases where w = 0. The proof is by induction on k ≥ 1. The k = 1 case is trivial.
Assume that the lemma is correct for all 1 ≤ k′ ≤ k, and consider the case where
k′ = k +1. For all 0≤ j ≤ k,

j

∏
i=1

wi ≤
(w

wk+1

) j
k

(by the induction hypothesis)

≤ w
j
k (since 0 < w≤ wk+1 ≤ 1)

≤ w
j

k+1 (since 0≤ w≤ 1)

and the subcase where j = k +1 is trivial again.

Since at level l each of the two subgroups has at most 2l−1 agents, the number
of constraints k at level l is at most 4l−1. If the constraints network is random, with
constraints density p1, the expected number of constraints k at level l is at most
p14l−1, and the upper bound on the expected number of constraints checks is given
by

El(w)≤ 1−w

1−w
41−l

p1

(3.2.4)

Note. In the algorithms presented in this study, operations on sets are used in their
intuitive meaning. For example, the propositions

a ∈ {(a,0.2),(b,0.3)} {(a,N,0)}∩{(a,0.2)}= {a}

are considered true. This convention hopefully picks the right trade-off between
the algorithms’ verbosity and readability.

Chapter 4

Partitioning into a Hierarchy of
Groups

Partitioning into groups is a distributed algorithm, such that upon its termination
groups of agents are organized into a binary tree. All agents are leafs, and represen-
tative agents compose all higher levels of the binary tree (see Figure 3.2). Groups
at the same level are disjoint, and groups of higher level contain groups of lower
levels.

The main part of the algorithm is presented in Algorithm 4.1. The algorithm is
run by each agent, and performs merges of pairs of agents or groups into ever larger
groups. It runs concurrently by each agent selecting a neighbor to merge with.
Merging is performed when two agents agree to merge. In the description of the
algorithm, the symbol s is used for the agent that selects a neighbor to merge with.
This agent (s for self) may represent any group of agents. When a representative
agent scans its neighbors for a candidate to merge with, it considers neighbors to
any of the group’s members.

The algorithm works as follows. Each agent s selects one of its neighbors (say,
g) as a candidate for merging with. If the selection is mutual, the agents merge. If
not, the selected agent g can either respond negatively (i.e., NoJoin) when its own
selection was different, or inform s that it has already made a merging decision
(i.e., Done〈g, . . . 〉). Any merging decision is sent to all neighbors of the merging
agent with Done messages. Agents form a queue of all their neighbors, ordered
by their priority of merging with these neighbors, and erase from the queue the
neighbors that have already merged. Agents stop proposing when their queues of
neighbors are empty. In such a case, the agent advances to the next level without
joining another group.

Partitioning proceeds in levels, where during each level every agent joins a
neighboring agent, unless this is not possible. At the end, a binary hierarchy of
groups is established, with the root group containing all the nodes of the network.
During each level every agent continuously tries to join one of its neighbors, pre-
ferring agents with lower connection weight. This way, dense connectivity (i.e.,

23

24 CHAPTER 4. PARTITIONING INTO A HIERARCHY OF GROUPS

constraints tightness) remains in lower levels of the hierarchy, and inconsistent
partial solutions are expected to be pruned as early as possible.

4.1 Partition survey

Before going into the partition algorithm details, let us trace its execution on a
small graph-coloring problem. Figure 4.1(a) shows the constraint network, where
the domains of a, c and d are {1,2,3}, and the domain of b is {1,2,3,4}. Weights
on the edges show the percentage of allowed value pairs. For example, the weight
of (b,c) edge is 0.75, since three value pairs (equal colors) are forbidden, and
therefore the weight is 4·3−3

4·3 = 0.75.

a

b

.75

c

.67

.75

d

.67

(a) Initial constraint network.

b

c.5

(b) Level 2 of the constraint network partition-
ing.

Figure 4.1: A small constraint network.

The partitioning process starts when each agent sends a Join message to a
minimal-weight neighbor. When several neighbors have minimal weight, one of
them is picked arbitrarily. Assume that the messages are: a→ c, b→ a, c→ d, and
d→ c. Here, c and d join and send each other components info. Afterwards, they
pick a leader, c, and send Done messages to all the neighbors.

Since c sent a Done message to a and b, these agents remove c from their
neighbors list. They now join, exchange components info, pick a leader, b, and
send a Done message to each other and to c.

Each agent has now received Done messages from all its neighbors, and can
send a Leader message to its leader, to activate it at the next level of partitioning.
Thus, a and b each send a Leader message to b, and c and d each send a Leader
message to c.

At level 2 of the partitioning, b and c join, picking d as the leader (Figure 4.1(b)).
The resulting hierarchy of agents is shown in Figure 4.2. In the end, d sends a
Search message to all agents in order to initiate the search process.

4.2 Algorithm primitives

Let us look closer at Algorithm 4.1. First, several variables are declared:

4.2. ALGORITHM PRIMITIVES 25

d, 0.5

b, 0.75 c, 0.67

a b c d

Figure 4.2: The resulting partition hierarchy of the small constraint network, in-
cluding virtual constraint weights.

• N: static list of neighboring abstract agents, associated with the weights of
the respective edges.

• Ñ: dynamic list of neighbors, initially N with the addition of s. The list
shortens as the neighbors indicate that they have joined other agents.

• C: agents that compose the list of components of s, where s is a leader of
a group of agents. C is composed of triplets of type (a,Na, level). A value
level > 0 indicates that the simple agent a was selected as a leader at that
level. Na is the list of a’s neighbors in the constraints graph (neighbors at
level 0).

• leader: the leader of an agent s in the groups hierarchy. The value USER

indicates that s represents the top-level group, and that the solutions which
it produces are received by the user.

• Nldr: list of neighbors of an agent that is a leader. This list grows as the
neighbors at the current level indicate that they have joined with another
agent; it contains the leaders of those neighbors.

• parent: the parent of the leaf-level simple agent. For example, in Fig-
ure 3.2(b) the parent of f is j, but the leader of (the representative agent)
f is i.

• pairs: list of edges between agents that are members of two sub-groups that
have been merged, ordered by increasing weights of the edges. Pairs are
composed of members of different subgroups.

The communication procedures used in the algorithm also deserve an expla-
nation. Since at a given level we are only interested in receiving messages from
agents that are at the same level, each message is tagged with a level parameter:

• SEND(destination, tag, message) — sends message with a given tag; never
blocks.

• RECEIVE(tag) — reads only messages with the given tag attached, and
leaves other messages in the queue; blocks if there are no appropriate mes-
sages.

26 CHAPTER 4. PARTITIONING INTO A HIERARCHY OF GROUPS

All messages are tagged with the level variable. As a result, the tag parameter is
omitted in the listings of the procedures, and is assumed to be equal to level. In
other words, messages are always tagged with the agent’s current level variable
value, and only messages whose tag equals to level are extracted in RECEIVE().
The resulting code looks similar to the common send/receive primitives, but the
reader should be aware of their different semantics.

During the algorithm’s execution, the following message types are used:

• Join〈sender〉: a request to join an agent. If the receiving agent sends a Join
as well, an agreement on joining is reached.

• NoJoin: a negative answer to a Join request.

• Components〈components〉: after agreement on joining has been reached, the
agents use this message in order to inform each other about their components
sets.

• Done〈sender, leader〉: a message from a neighbor notifying that it has per-
formed a join, and which agent has been designated as its leader.

• Leader〈neighbors, components, single, level〉: one of two messages (sent by
the merging agents) which notify the receiving agent that it has been selected
as a leader at a given level. The receiving agent merges the received lists of
neighbors and components with its own lists, to get the resulting neighbors
and components lists. If single is TRUE, there is only one incoming Leader
message, and the agent “merges” with itself, without the selection of a leader.
The very first Leader messages which all agents send to themselves bootstrap
the algorithm.

• Search: originates from the top-level agent, and indicates that the partition-
ing is over. This message begins the search phase (here, DISHS or DESRS).

Note that the algorithms presented here do not require garbage collection of
messages — all messages, however tagged, are eventually consumed.

4.3 Detailed description

GROUP-PARTITION() begins with the initialization of the level message tag vari-
able to the special value p (partition), which is used exclusively for Leader and
Search messages, and sends itself a Leader message (line 1) — effectively per-
forming a goto to the last case in the switch statement (line 28).

The agent then receives its own Leader message, and initializes the values of
its level (initially 0) and its list of neighbors and their weights — N. It initializes a
dynamic list of neighbors — Ñ (including the agent itself, with maximum weight
connection), a list of components (i.e., single agents), initially containing just the
agent — C — and the leader’s neighbors list Nldr. The list of the leader’s neighbors

4.3. DETAILED DESCRIPTION 27

Algorithm 4.1: GROUP-PARTITION(s, N): Partitioning into groups.
Input : agent s, its neighbors N
Output: components C, pairs, leader, parent← USER
Locals : Ñ, Nldr, g, level← p, start← TRUE, next-level

SEND(s, Leader〈N, {(s,N,0)}, TRUE, 0〉)1
loop forever do2

switch RECEIVE() do3
case Join〈t〉4

if t = g then5
SEND(g, Components〈C〉)6

else7
SEND(t, NoJoin)8

case NoJoin9
g← SELECT(Ñ)10
SEND(g, Join〈s〉)11

case Components〈Cg〉12
if s 6= g then13
{leader,C}← SELECT-LEADER(C, Cg, next-level)14
if parent = USER then15

parent← leader16
else17

leader← s18
foreach t ∈ N∪{s} do19

SEND(t, Done〈s, leader〉)20
case Done〈t, leadert〉21

if t 6= s then22
Nldr← UPDATE(Nldr, N, t, leadert)23

Ñ← Ñ r{t}24
if Ñ = NIL then25

level← p26
SEND(leader, Leader〈Nldr r{leader}, C, s = g, next-level〉)27

case Leader〈N’, C’, single, level’〉28
if start then29

N← N’, C← C’, Nldr← NIL30
else31

pairs←
{
({t, r},w) : (t, N̂) ∈ C ∧ r ∈ C’ ∧ (r,w) ∈ N̂

}
32

N← COMBINE(N, N’), C← C∪C’33
start←¬start∨ single34
if start then35

if N = NIL then36
leader← USER37
foreach t ∈ C do38

SEND(t, Search)39
else40

level← level’, next-level← level+141
Ñ← N∪{(s,1.5)}42
g← SELECT(Ñ)43
SEND(g, Join〈s〉)44

28 CHAPTER 4. PARTITIONING INTO A HIERARCHY OF GROUPS

is initially empty. Whenever an agent is selected as a leader in later stages of the
algorithm, it has to perform similar tasks. For example, when two agents are joined
at level 3, each one can have up to 4 components (all of which are single agents).
The agent that is selected as the leader must receive the list of its components,
which can include up to 7 agents. It must also receive the list of its neighbors at
level 4. This list is compiled by the two joining agents of level 3, from the Done
messages that they had received from all of their neighbors at level 3.

If the message implies N = NIL, it means that s is the top-level leader respon-
sible for the group of all the agents, and the search phase can start. In this case, s
sends Search message to all the agents (including itself), which effectively imple-
ments a synchronization barrier between the two phases of groups partitioning and
solutions search (lines 36–39).

In the general case, the agent will receive two Leader messages (line 28), and
will unite the received neighbors and components (the start variable is used for
this task) (lines 29–34). Uniting the neighbors also needs to combine the weights
correctly — weights of connections to the same agent are multiplied together. See
Algorithm 4.4 for combining weights details.

Let us now consider the join negotiation process. After receiving a Leader
message (line 28), s (provided it is not the top-level leader) uses the SELECT()
function to pick a neighbor to which it is connected with minimal weight (reverse
constraint tightness), and sends it a Join request (lines 41–44). Note that if all
neighbors have become unavailable (joined another agent), s will successfully try
to join itself, since it is considered to be connected to itself with a unique maximum
weight.

A response to the Join message can come in the form of a NoJoin (line 9)
or a Join message (line 4). Only the former of these is really a response, as the
latter bears semantic meaning of a response, but is sent independently of the Join
message originating from s.

In case of a NoJoin, s repeats its attempt (lines 10–11), in the same way as it
did at the end of handling the Leader message.

In case of a Join, there are two possibilities. If the message comes from the
same agent which s picked (i.e., g), this successfully concludes the join negotia-
tion (line 6). When a join negotiation is completed, both agents need to select a
leader from the set of agents in the combined (merged) set. They start by send-
ing each other the list of their own components, using the Components messages.
Otherwise, the join attempt originates with an agent that was not selected by s, so
it is rejected with NoJoin (line 8), and s continues to wait for a response from its
selected g.

When s receives a Components message, it computes the list of components
which will be later sent to the leader (line 14). The leader is picked from the united
components list using the SELECT-LEADER() procedure (Algorithm 4.2), which
picks an available agent for this task, and marks it as taken (puts non-0 level in the
appropriate field). A special case is when s unites with itself (because it could not
find a node to merge with), in which case it just ascends to the next level, and no

4.3. DETAILED DESCRIPTION 29

updating takes place (line 18). SELECT-LEADER() is deterministic, and chooses
an agent with a maximal number of connections across the merging components
lists; a possible implementation is shown in Algorithm 4.2. Done messages are
then sent to all the neighbors of s (including s itself), notifying them of the chosen
leader, so that they can update the neighbors list of their own leader (lines 19–20).

Algorithm 4.2: SELECT-LEADER(C, C’, level): Deterministic leader selec-
tion.

Input : primary components list C, secondary components list C’, level
Output: new leader leader, possibly updated C
Locals : max-size←−1, Best-Nodes← NIL

forall (t,N’,0) ∈ C∪C’ do1
size←

∣∣({t}×N’)∩
(
(C×C’)∪ (C’×C)

)∣∣2
if size > max-size then3

Best-Nodes← NIL4
max-size← size5

if size = max-size then6
Best-Nodes← Best-Nodes∪{t}7

leader← DETERMINISTIC-PICK(Best-Nodes)8
if (leader, ·, levelldr) ∈ C then9

levelldr← level10

In case of a Done message (line 21), the update process (shown in Algo-
rithm 4.3) is what happens first, and Done messages from the selected partner and
s itself are ignored (lines 22–23). UPDATE() also combines the weights of con-
nections to multiple neighbors which are now components of a neighboring leader.
Then, the sending agent is removed from the dynamic neighbors list (line 24), and
the list is tested for emptiness. Since the list also contains s, this condition will
only come true after s sends itself a Done message (which happens after leader se-
lection). When the dynamic neighbors list is finally empty, s resets its level tag to p

(intended only for Leader and Search messages), and sends the leader an initiation
message (lines 25–27).

Algorithm 4.3: UPDATE(Nldr, N, t, leadert): Updating leader’s neighbors list.
Input : leader’s neighbors list Nldr, current neighbors list N, a neighbor t, its leader

leadert

Output: updated Nldr

select (t,weight) ∈ N do1
if (leadert,old-weight) ∈ Nldr then2

old-weight← old-weight ·weight3
else4

Nldr← Nldr∪{(leadert,weight)}5

30 CHAPTER 4. PARTITIONING INTO A HIERARCHY OF GROUPS

Algorithm 4.4: COMBINE(N, N’): Combining weights in neighbors lists.
Input : neighbors lists N and N’
Output: updated N

forall (t,weight) ∈ N’ do1
if (t,old-weight) ∈ N then2

old-weight← old-weight ·weight3
else4

N← N∪{(t,weight)}5

4.4 Algorithm correctness

An informal proof of the correctness of the partition algorithm (Algorithm 4.1) can
be constructed as follows: show that Algorithm 4.1 results in a correct partitioning
of agents into a binary tree of groups (as shown in the example in Figure 3.2).

The control flow of the algorithm, in a given agent, can be modeled as shown
in Table 4.1. With the help of this model, there are some invariants that can be
observed in the group partitioning algorithm’s flow. First, an agent will not send
a Done message, unless it has found another agent to join with (which will be the
same agent in the extreme case). Also, an agent will not send a Leader message to
the representative agent of the new group, unless it has received the Done messages
from all its neighbors. Since an agent can only change its level in two cases: when
sending a Leader message, and when receiving a Leader message, it is not possible
for an agent s to deadlock waiting for an answer to a Join request from an agent
t. This is true because t will not change its level before receiving a Done message
from s (since s is one of t’s neighbors).

Moreover, each agent will eventually find an agent to join with, since it ar-
bitrarily picks an agent to try and join with from agents to which it is connected
with a minimal-weight constraint. Since a cycle with ever-shrinking weights is not
possible, there must exist a pair of agents, each of which is connected to the other
via a minimal-weight constraint, and thus they will pick each other after a finite
number of attempts during the joining process. After this happens, these agents are
removed from the dynamic neighbors lists of their respective neighbors, and this
argument can be re-applied.

Therefore, in each level all representative agents at that level will pass through
the following events: receiving a Leader message; sending a finite number of Join
requests, and receiving a NoJoin answer for each in a finite time; receiving a Join
answer from some agent g; exchanging Components messages with g; sending
Done messages to all neighbors; receiving Done messages from all neighbors, and
sending a Leader message. This establishes termination for Algorithm 4.1.

The resulting partition is also a correct binary tree. First, each representative
agent is part of the components list which it represents. Also, an agent receives
either two Leader messages with single = FALSE from two different agents, with
different components sets, and becomes a new node in the binary partitioning tree.

4.5. A PARTITION EXAMPLE 31

State Action

Receive Initial state. Wait for an appropriately tagged message.
Upon receiving such message, dispatch to the correspond-
ing state.

Join_g Send components to g, and go to Receive.
Join_t Send NoJoin to t, and go to Receive.
NoJoin Send Join to chosen agent, and go to Receive.
Components Send Done messages to all neighbors, and go to

Receive.
Done If the updated dynamic neighbors list is empty, send

Leader message to the representative agent. Go to
Receive.

Leader If the new neighbors list is empty, send Search mes-
sages to all agents and go to Receive. Otherwise, go
to NoJoin.

Search Final state.

Table 4.1: Control flow of Algorithm 4.1.

Or, it receives one Leader message from itself with single = TRUE (which happens
when an agent did not succeed in joining another agent), and in this case no new
node is formed (level is incremented by 1, the components set remains the same,
and the neighbors list is updated).

The binary partitioning tree is essentially built bottom-up, resulting in a tree
similar to Figure 3.2. This establishes correctness for Algorithm 4.1.

4.5 A partition example

Figures 4.3 and 4.4 show a complete trace of GROUP-PARTITION() execution on a
randomly generated CSP, with p1 = p2 = 0.4.

A trace of messages received by the agents during the partitioning process is
shown in Appendix A. The order between different agents’ messages is the result
of synchronization performed by the system’s output stream. Note the Search
message sent by agent 8 to itself in line 39.

32 CHAPTER 4. PARTITIONING INTO A HIERARCHY OF GROUPS

1 3
.62

4
.64

6

.62

9

.66

2

.61

7
.6

10

.56

5

.63

.58 .59

.6 .59

.6

.62

.69

.53

.6

(a) Initial CSP, p1 = p2 = 0.4. This is a level-
0 partition graph, with constraint weights av-
erage approximately equal to 1− p2. Note that
agent 8 (not shown here) is disconnected from
the graph, and thus immediately sends itself a
Search message.

1

[3],9

.4092

[4],5

.64

[6],7
.62

[2],10.61

.36

.2695

.3422

.6

(b) Partition graph at level 1. Components
are listed in each node, with the representative
agent shown in brackets. Note that agent 1 has
not succeeded to join another agent. As a re-
sult, it ascended to level 1, and is still able to
be selected as a leader in the future.

1 3,4,[5],9
.2619

2,6,[7],10

.62 .1252

(c) Partition graph at level 2. Here we see
that agent 1 will only join with a representative
agent in (the last) level 4, since (leader) agents
5 and 7 are connected by a minimal weight.

1

2,3,4,5,6,7,[9],10.1624

(d) Partition graph at level 3. Only two agents
are left, and they will merge at level 4.

Figure 4.3: Successive levels formation during an execution of GROUP-
PARTITION() on a 10 agents random graph.

4.5. A PARTITION EXAMPLE 33

1, .1624

9, .1252 1

5, .2695 7, .36

3, .6 4, .59 2, .56 6, .53

2 103 9 4 5 6 7

8

Figure 4.4: Partition tree, showing representative agents and constraint weights
between two subgroups of each representative agent. Agents 1 and 8 produce in-
dependent partial solutions.

34 CHAPTER 4. PARTITIONING INTO A HIERARCHY OF GROUPS

Chapter 5

Concurrent, Hierarchical Search

After the preprocessing, the agents are partitioned into a hierarchy of groups, and
each group has one of the agents as its leader. The first search algorithm we will
present achieves concurrency by combining partial solutions concurrently. Partial
solutions correspond to the groups that were generated by the partition process.
Leaders of groups control the generation of partial solutions of the groups they
lead, and deliver consistent partial solutions to the leaders of their next higher level.
Leaders check the consistency of candidate partial solutions for their group by
requesting the involved agents to check constraints.

Since some agents may get their Search message earlier than others, and hence
some agents may receive search phase messages before receiving the Search mes-
sage, a distinct tag s is employed for all messages in this phase.

Each agent takes care of two missions. At the primitive level, it can answer
queries for checking consistency of constraints that involve it. These queries are
asked during the search process, which is performed by group leaders. Case Check,
in Algorithm 5.1, executes in each agent s, regardless of whether it is assigned a
group, and regardless of its level in the hierarchy of groups.

During the search itself, agents produce solutions and send them up in the
groups hierarchy. This begins at level 0 in the hierarchy, when all agents send
their domains to their parents, as shown in the Search case of the algorithm. The
Answer and Assignment cases for the representative agents, shown in the remainder
of Algorithm 5.1 and detailed in Algorithm 5.2, solutions from child group agents
are combined, and suitable partial assignments are sent up in the hierarchy.

In order for the solving process to avoid getting stuck in local minima of the
search space (“bad” subtrees), the iteration over partial assignments pairs is per-
formed in random order. For this purpose, once a partial assignment arrives from
one of the children, its unions with existing partial assignments from the other child
are added to the assignments store. Later, when the leader requires an assignment
to test, a random assignment is picked, and removed, from the store (lines 6–7 of
Algorithm 5.4).

To efficiently facilitate these operations, the store can be implemented using

35

36 CHAPTER 5. CONCURRENT, HIERARCHICAL SEARCH

Algorithm 5.1: DISHS-SOLVE(s): Searching for solutions.
Input : agent s, output from Algorithm 4.1, domain D
Output: a global solution is sent to USER
Locals : row← 0, Pending[·]← 0, Solutions[·], Iterator← NIL, requests← 1

loop forever do1
switch RECEIVE() do2

B Continuing Algorithm 4.1...

case Search3
level← s4
forall v ∈ D do5

SEND(parent, Assignment〈s, {〈s,v〉}〉)6
SEND(parent, Assignment〈s, STOP〉)7

case Check〈t, row’, {〈s,v〉,〈r,w〉}〉8
SEND(t, Answer〈row’, CHECK(v, r, w)〉)9

case Answer〈row’, ok〉10
if Pending[row’] 6= 0 then11

if ¬ok then12
Pending[row’]← 013
requests← requests+114
PROCESS-REQUEST()15

else16
Pending[row’]← Pending[row’]−117
if Pending[row’] = 0 then18

SEND(leader, Assignment〈s, Solutions[row’]〉)19
case Request20

requests← requests+121
PROCESS-REQUEST()22

case Assignment〈t, partial〉23
ITERATOR-ADD(Iterator, t, partial)24
PROCESS-REQUEST()25

5.1. DISHS SURVEY 37

Algorithm 5.2: PROCESS-REQUEST(): Process pending requests for assign-
ments to be sent up in the hierarchy.

Input : see Algorithm 5.1
Output: actions necessary to ensure partial solutions flow up the hierarchy are

taken

while requests > 0 do1
assignment← ITERATOR-NEXT(Iterator)2
if assignment = NIL then3

forall child ∈ ITERATOR-REQUESTS(Iterator) do4
SEND(child, Request)5

return6
else if assignment = STOP then7

SEND(leader, Assignment〈s, STOP〉)8
return9

else10
forall {r,q} ∈ pairs do11

select {〈r,v〉,〈q,w〉} ∈ assignment do12
SEND(r or q, Check〈s, row, {〈r,v〉,〈q,w〉}〉)13

Pending[row]← |pairs|14
Solutions[row]← assignment15
row← row+116
requests← requests−117

d

b c

a b c d

Figure 5.1: Partition hierarchy of the small constraint network.

a complete binary tree, as shown in Appendix B, providing logarithmic times for
all operations. In our implementation, however, we use a dynamic array, which is
more efficient in practice, providing constant amortized operation times.

5.1 DisHS survey

Let’s return to the example in Section 4.1. The partition hierarchy of the graph-
coloring problem is reproduced in Figure 5.1.

The solving proceeds as follows. Primitive agents a, c and d send partial as-
signments 〈x = 1〉, 〈x = 2〉, 〈x = 3〉 (where x is a, c and d, respectively — each
agent sends three partial assignments) to the leaders b and c. Agent b sends an
additional 〈b = 4〉 to its leader, which happens to be itself (the leader of primitive

38 CHAPTER 5. CONCURRENT, HIERARCHICAL SEARCH

(a) b sends consistent
pairs to d.

a b

1 2
1 3
1 4
2 1
2 3
2 4
3 1
3 2
3 4

(b) c sends consistent
pairs to d.

c d

1 2
1 3
2 1
2 3
3 1
3 2

(c) d produces solu-
tions.

a b c d

1 2 3 1
1 2 3 2
1 3 2 1
1 3 2 3
1 4 2 1
1 4 2 3

. . .

Table 5.1: Partial assignments sent by leaders up in the partition hierarchy.

agent b is b). Afterwards, leaders b and c prune inconsistent pairs of these partial
assignments, and send the consistent pairs to their leader d.

The partial assignments sent up in the partition hierarchy are described in Ta-
ble 5.1. Note, however, that the assignments aren’t necessary sent in the given
order.

While leaders b and c don’t need to query other agents in order to prune incon-
sistent value pairs (since they have full knowledge of the relevant constraints), d
prunes inconsistencies using Check queries to a, b and c, and only then produces
complete solutions to the DISCSP.

5.2 Algorithm primitives

Algorithm 5.1 takes as its input the output variables of Algorithm 4.1. The algo-
rithm also makes use of several key variables:

• Solutions[·]: a table of unions of partial assignments, which await resolution
of their validity. That is, not all answers to check requests for these unions
were received yet, and those received so far did not reveal constraints con-
flicts.

• Pending[·]: mirrors the Solutions[·] table, but holds numbers of check re-
quests not yet answered.

• row: incrementing row index for the two tables above. This index is also
attached to the check requests, and is returned with the corresponding an-
swers.

• Iterator: an iterator over partial assignments unions. The iteration is per-
formed in random order.

5.3. ALGORITHM ANALYSIS 39

• requests: number of assignments which have to be produced. This is es-
sentially a set of tokens which are passed between Algorithm 5.1 and Algo-
rithm 5.2.

The following message types are used during the algorithm’s execution:

• Search: initiates the search phase of DISHS. Causes all primitive agents to
send their domains to their respective parents, followed by a STOP assign-
ment, indicating that no more assignments are available.

• Check〈t, row, constraint〉: message to a primitive agent from representative
agent t, requesting to check a specific constraint (including values) belonging
to that agent.

• Answer〈row, result〉: boolean answer from a primitive agent, with row equal
to the corresponding field in the respective Check query.

• Assignment〈t, partial〉: an assignment from a representative agent t, sent to
the leader of its enclosing group. Each leader receives Assignment messages
from its two children.

• Request: a message from a representative agent to one of its children (rep-
resentative agents of one of the two subgroups), requesting one more assign-
ment.

Since each agent is a primitive agent, and can also be a representative agent
for some group, there are essentially two processes competing within each agent
in the second phase of DISHS. For this reason, Check and Answer messages are
given higher priority than Assignment and Request messages, since not handling
the check queries in time can delay other representative agents. Therefore, while
there are Checks or Answers in the incoming messages queue, Assignment and
Request messages are waiting.

5.3 Algorithm analysis

At the end of the partition phase, described in Chapter 4, all agents receive a Search
message (tagged with level p). Then, each agent iteratively sends its domain to its
parent, using the Assignment messages, followed by a STOP Assignment message.
The STOP type of message is ultimately used to discover that there is no solution
to the DISCSP. At the same time, the level is also changed to s, which is the
distinctive level for the solving phase of DISHS.

The solution search process itself begins once representative agents of level-1
start receiving the singleton partial assignments from their child primitive agents.
Each leader adds received Assignments to its unified assignments Iterator, and at-
tempts to produce the required number of assignments, as indicated by the requests
variable, initially 1.

40 CHAPTER 5. CONCURRENT, HIERARCHICAL SEARCH

During this attempt to produce united assignment, shown in Algorithm 5.2, the
representative agent may forward the request to its child agents using the Request
message. This happens when no more partial assignments unions can be produced
by Iterator.

When the iterator succeeds in producing another combined assignment, the
representative agent sends one Check message for each cross-subgroup constraint.
The message carries values extracted from that assignment, to an agent which can
answer whether the constraint is satisfied. Consequently, the Pending and the Solu-
tions tables are updated with the information about a possible partial solution, and
the requests counter is decremented.

Once the representative agent receives a negative Answer message in response
to a previously sent Check message, it increments the requests counter back. Next,
it attempts to produce another partial solution up in the hierarchy, since the unified
assignment for which the Answer message arrived is not a valid partial solution.
If, however, all Answer messages were positive, the partial solution is valid, and is
sent up in the hierarchy of the partition tree.

This process continues until USER, a destination representing the system en-
capsulating the DISHS algorithm, receives an Assignment message with either a
solution to the DISCSP, or a STOP, indicating the absence of a solution.1

5.4 Algorithm optimization

5.4.1 On-demand partial solutions

In general, Algorithm 5.1 can be written in a much simpler manner than shown
here. All representative agents may write information about combined partial as-
signments to the Solutions and the Pending tables, removing the need for assign-
ment requests sent down in the hierarchy, and greatly simplifying the concept of
Iterator.

However, this presents a problem of explosive growth in the number of mes-
sages not yet handled at any moment. The underlying problem is that most solvable
DISCSP problems, even randomly generated, contain search space regions abun-
dant with partial solutions. Hence, once a group of agents, led by a representative
agent, encounters such a region, it will send a massive amount of Assignment mes-
sages with partial solutions up in the partition hierarchy. Moreover, it will also
send a massive amount of Check messages to verify these partial solutions, and
thus overflow the agents performing the checks, causing them to indefinitely post-
pone check requests from other representative agents.

Thus, a single representative agent stumbling upon a partial solutions-abundant
search subspace may cause constraint checks starvation to other representative

1We assume here that the DISCSP constraints graph is connected. If it has two or more compo-
nents (which may happen, e.g., when generating random problems for an experiment). USER will
receive at least one Assignment message from the top-level agent of each component.

5.4. ALGORITHM OPTIMIZATION 41

agents, which can delay the production of their respective partial assignments. This
happens in addition to the general overflow of the message queues in the agents net-
work. The starvation effect is dominant in causing the system to fail to produce any
solutions to the DISCSP in a reasonable time.

Consequently, the second phase of DISHS, as shown here, uses the on-demand
concept of producing partial solutions: send just one consistent assignment up in
the hierarchy, and respond to additional requests.

One might argue that it would be beneficial to attempt to produce some k > 1
partial solutions each time. However, the round-trip delay of a partial solution re-
quest does not matter in practice, since in general a single partial solution received
from a child agent allows the representative agent to try many combined partial as-
signments (equal to the number of partial solutions already received from the other
child agent).

5.4.2 Cached answers

Constraint check requests are sent with two agent-value pairs. There is no need to
perform the same check over and over, since the results can be stored as cached
answers in the Iterator. Whenever a partial assignments union is requested using
ITERATOR-NEXT(), each constraint in the assignment being combined (i.e., two
agents and their respective values) is resolved using the cached answers table.2

Cached answers are a double-edged sword, since the checks against the no-
goods table are consecutive, while the constraint checks requested using Check
messages are performed in parallel. On the other hand, analysis of appropriately
ordered consecutive constraint checks in Section 3.2 suggests that they are ben-
eficial to the overall performance of DISHS, and this is indeed what happens in
practice.

With the consecutive checks against the cache, it is only natural to extend
this mechanism to the representative agent itself, which checks constraints that
are owned by itself, before sending Check messages for remote constraints. This
also improves performance of the search phase of DISHS.

Algorithm 5.3 shows the process of addition of a partial solution to the rep-
resentative agent’s assignments iterator. We see that the partial solution is added
to one of two queues, each one holding solutions received from one of two child
agents (the STOP solutions terminator is handled as a special case). After that,
unions of the given partial solution with all the solutions from the other queue are
added to the united assignments list, from which they are later picked in random
order. Finally, since the child agents delivered a partial solution, its requested
indicator is reset.

Algorithm 5.4 shows the process of iteration over united pairs of partial solu-
tions, which have been received from the child agents. First, if the list of unified as-
signments is empty, ITERATOR-NEXT() returns NIL, unless both child agents sent

2Each separate check against the table is, of course, counted as a constraint check in the experi-
ments.

42 CHAPTER 5. CONCURRENT, HIERARCHICAL SEARCH

Algorithm 5.3: ITERATOR-ADD(Iterator, t, partial): Add a partial solution
to the assignments iterator.

Input : Iterator, source t, partial solution partial
Output: partial is registered in the iterator
Static : sources0,1← UNASSIGNED, queues0,1← NIL, closed0,1← FALSE,

requested0,1← FALSE, assignments← NIL, Cache[·]

i← 01
if sources0 /∈ {UNASSIGNED, t} then2

i← 13
sourcesi← t4
if partial = STOP then5

closedi← TRUE6
else7

queuesi← queuesi∪{partial}8
assignments← assignments∪{partial∪partial’ : partial’ ∈ queues1−i}9
requestedi← FALSE10

STOP terminators, in which case it also returns STOP (since no more assignments
can be produced). Since the unions are constructed in Algorithm 5.3, ITERATOR-
NEXT() randomly picks and removes an assignment from the existing list. As was
mentioned before, an approach outlined in Algorithms B.1, B.2, and B.3 can be
used. However, our implementation of DISHS uses a dynamic array to implement
the unified assignments list, which implies constant amortized cost for addition and
removal of elements.

Finally, ITERATOR-NEXT() goes over the constraints list and checks whether
they are recorded in the cached answers table. If a constraint is recorded as a
conflict, the algorithm returns FAIL (taking care of FAILs is not shown in Algo-
rithm 5.2 for the sake of clarity). If no cached conflicts have been encountered,
ITERATOR-NEXT() returns the unified assignment, together with the list of non-
cached constraints which should be checked. Usage of this list of constraints is
also implicit in PROCESS-REQUEST().

Algorithm 5.5 shows what happens when ITERATOR-NEXT() reports that no
more unified assignments are available, and PROCESS-REQUEST() (Algorithm 5.2)
calls ITERATOR-REQUESTS() in order to find out to which child agents it will send
Request messages. The algorithm is quite simple — it does not include a child
agent in the returned set if it produced no partial solutions since the previous call
to ITERATOR-REQUESTS(), if it sent a STOP terminator (indicating that no more
solutions are available), or if it is a primitive agent. Sending Request messages to
primitive agents is meaningless, since such messages are handled by representative
agents; primitive agents send their whole domain to their respective parents in the
beginning of the search phase (Algorithm 5.1).

5.4. ALGORITHM OPTIMIZATION 43

Algorithm 5.4: ITERATOR-NEXT(Iterator, pairs): Produce next unified as-
signment from the iterator.

Input : Iterator, constraints list pairs
Output: a unified assignment is returned, together with the list of constraints to

check
Static : see Algorithm 5.3

if assignments = NIL then1
if closed0∧ closed1 then2

return STOP3
else4

return NIL5
candidate← random element from assignments6
assignments← assignments r{candidate}7
checks← NIL8
forall {r,q} ∈ pairs do9

select {〈r,v〉,〈q,w〉} ∈ candidate do10
constraint←{〈r,v〉,〈q,w〉}11
if constraint ∈ Cache then12

if ¬Cache[constraint] then13
return FAIL14

else15
checks← checks∪{constraint}16

return 〈candidate,checks〉17

Algorithm 5.5: ITERATOR-REQUESTS(Iterator): Determine the child agents
which need to be sent requests for additional assignments.

Input : Iterator
Output: a set of 0–2 children is returned
Static : see Algorithm 5.3

requests← NIL1
forall i ∈ {0,1} do2

if ¬(requestedi∨ closedi∨ sourcesi = UNASSIGNED∨|queuesi[0]|= 1) then3
requests← requests∪{sourcesi}4
requestedi← TRUE5

44 CHAPTER 5. CONCURRENT, HIERARCHICAL SEARCH

5.5 Algorithm correctness

We now present an informal proof of the correctness of the second phase of the
DISHS algorithm. We show that Algorithm 5.1 indeed results in all correct so-
lutions sent to USER, followed by an indicator that the search space has been ex-
hausted.3

Let us follow the control flow of the algorithm. Upon receiving a Search mes-
sage, all level-1 representative agents receive a singleton Assignment message for
each value in the domains of their child primitive agents. Moreover, each repre-
sentative agent is assigned, via the requests variable, a requirement to produce one
consistent partial solution to be sent up in the hierarchy.

We note that it is not possible for the requests variable to decrease to 0, and
then increase back to 1, without an attempt to produce a partial solution. Such an at-
tempt is performed via PROCESS-REQUEST() subroutine, shown in Algorithm 5.2.

In Algorithm 5.2 we see that, unless Iterator is exhausted, requests is reduced
immediately after sending Check messages to the agents possessing knowledge
about the constraints which need to be checked (lines 11–17). In essence, the re-
duction in requests is passed as a token with the constraints check requests. When
the respective Answer messages are received (line 10 of Algorithm 5.1), this token
will either return to requests, if one of the constraint checks failed (lines 12–15),
or will be transformed into a partial solution, which will be sent to the leader of the
current representative agent (lines 16–19).

Also, if Iterator is exhausted, an additional Request is sent to one or both of the
child agents, causing them to produce more partial solutions. Once these solutions
are received in the representative agent, Algorithm 5.2 will execute again, with a
refilled Iterator. Or, the children’s search space is exhausted, in which case the
corresponding STOP indicator propagates up in the hierarchy.

Ultimately, each representative agent either produced a partial solution and sent
it up in the hierarchy, is attempting to produce a partial solution, or requested its
children to produce one, so it can try to produce a partial solution (or all of these
together). At no time can the algorithm enter a deadlock, and no partial assignment
is tried more than once. This establishes termination for Algorithm 5.1.

Correctness of the algorithm follows from the way in which the representative
agents assemble and check their partial assignments from the partial solutions re-
ceived from their child agents. A united partial assignment will be authorized as
a valid partial solution only when all the constraints across the partial solutions of
the two sub-components are confirmed not to be in conflict by the agents which
possess knowledge about these constraints.

By induction, starting from the apriori valid singleton partial assignments sent
by the primitive agents, each united assignment with non-conflicting constraints
across the two sub-components is a valid partial solution for the agents component

3Since Algorithm 5.1 presents an on-demand version of the search for solutions, just one DISCSP
solution will be sent to USER. However, the encapsulating system may request additional solutions
via Request messages to the top-level representative agent.

5.6. EXPERIMENTAL EVALUATION 45

lead by a given representative agent. Thus, partial solutions sent to USER by the
top-level agent are valid solutions to the DISCSP. This establishes correctness for
Algorithm 5.1.

5.6 Experimental evaluation

The common approach in evaluating the performance of distributed algorithms is
to compare two independent measures of performance — time, in the form of steps
of computation [14, 25], and communication load, in the form of the total number
of messages sent [14].

Non-concurrent steps of computation are counted by a method similar to the
clocks synchronization algorithm of Lamport [13]. Every agent holds a counter of
computation steps. Every message carries the value of the sending agent’s counter.
When an agent receives a message, it stores the data received together with the
corresponding counter. When the agent first uses the received counter it updates its
counter to the largest value between its own counter and the stored counter value
which was carried by the message [16]. By reporting the cost of the search as the
largest counter held by some agent at the end of the search, a measure of non-
concurrent search effort that is close to Lamport’s logical time is achieved [13]. If
instead of steps of computation, the number of non-concurrent constraints check
is counted (NCCCs), then the local computational effort of agents in each step is
measured [16].

Experimental evaluation of the DISHS algorithm has been conducted using
an asynchronous simulator. To simulate asynchronous agents, the simulator im-
plements agents as Java threads. Threads (agents) run asynchronously, exchang-
ing messages. After the algorithm is initiated, agents block on incoming message
queues and become active when messages are received.

Experiments were conducted on random networks of constraints. The network
of constraints, in each of the experiments, is generated randomly by selecting the
probability p1 of a constraint among any pair of variables (constraint density) and
the probability p2, for the occurrence of a violation among two assignments of
values to a constrained pair of variables (constraint tightness) [17, 19].

In Figure 5.2, we see a comparison of DISHS and ABT on random problems of
moderate complexity. ABT outperforms DISHS in the number of non-concurrent
constraint checks performed by a ratio of about 2.5 in the phase transition region
(Figure 5.2(a)). DISHS uses much less messages than ABT in the same region
(Figure 5.2(b)).

On problems of higher complexity (more agents, larger domains — results not
shown here), DISHS’s performance drops dramatically. This is probably due to
DISHS wasting most of the computation resources on futile attempts to combine
partial solutions. One can speculate that some form of backtracking is necessary for
good performance of DISCSP algorithms. Chapter 6 describes a different second
phase algorithm, which purports to alleviate this deficiency of DISHS.

46 CHAPTER 5. CONCURRENT, HIERARCHICAL SEARCH

0

2000

4000

6000

8000

10000

12000

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DisHS and ABT

DisHS
ABT

(a) Non-concurrent constraint checks.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DisHS and ABT

DisHS
ABT

(b) Total number of messages.

Figure 5.2: Comparing DISHS with ABT on random problems with 10 agents,
domain size of 10, and p1 = 0.5.

5.6. EXPERIMENTAL EVALUATION 47

In Figure 5.3, we see a comparison of DISHS against ANTI-DISHS — algo-
rithm similar to DISHS, but with the weights ordering reversed during the groups
partitioning phase. That is, instead of pushing hard constraints down in the hierar-
chy, they are pushed up during the execution of GROUP-PARTITION().

We see that the difference, especially in terms of constraint checks, is tremen-
dous — good partitioning hierarchy is vital to the performance of DISHS.

It is interesting to note that the messages performance of ANTI-DISHS in Fig-
ure 5.3(b) is similar to that of ABT in Figure 5.2(b).

48 CHAPTER 5. CONCURRENT, HIERARCHICAL SEARCH

10

100

1000

10000

100000

1e+06

1e+07

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s
(l

og
ar

ith
m

ic
)

p2

Constraint checks: DisHS and AntiDisHS

DisHS
AntiDisHS

(a) Non-concurrent constraint checks. Note the logarithmic scale.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DisHS and AntiDisHS

DisHS
AntiDisHS

(b) Total number of messages.

Figure 5.3: Comparing DISHS with ANTI-DISHS on random problems with 10
agents, domain size of 10, and p1 = 0.5.

Chapter 6

Descending Requirements Search

The solving phase of hierarchical search is straightforward: each representative
agent receives independent partial solutions from its child agents and combines
them into a larger partial solutions. Concurrency is achieved by the fact that leader
agents at all levels check consistency by sending Check queries to the relevant
agents for the constraints being checked. However, the experimental evaluation
of Hierarchical Search (DISHS) in Chapter 5 seems to point to the fact that for
randomly generated DISCSPs it performs on the average more NCCCs than Asyn-
chronous Backtracking (ABT). One way of improving the concurrent performance
of hierarchical search is to try and combine compatible partial solutions. This is of
course impossible to guarantee, in face of the fact that DISCSPs are NP-complete
problems. Still, an attempt to improve the design of hierarchical search is in order.

An alternative search phase is presented below, where agents produce assign-
ments which are already compatible with partial assignments sent by their peers.

6.1 General description

In Descending Requirements Search (DESRS), presented in Algorithm 6.1, all
primitive agents independently initiate empty partial assignments (PAs), which
flow up and down in the hierarchy tree formed during the group-partitioning phase
of the algorithm (Algorithm 4.1). The growing partial assignments are distin-
guished by IDs, assigned to them during their initialization as empty PAs.

Each primitive agent which receives an Assignment message, attempts to com-
bine it with compatible values from its own domain, and send it further. When no
compatible value exists, a Nogood message with a resolved explanation is sent to
the “culprit” agent, which is determined during the resolution process.

The precise flow of messages is as follows. An Assignment message received
by a primitive agent is combined to a value of that agent and sent up, as described
above. A representative agent receiving such a message from one of its child agents
sends it either up in the hierarchy (if the PA covers the whole component), or to the
other child.

49

50 CHAPTER 6. DESCENDING REQUIREMENTS SEARCH

a

b

.75

c

.67

.75

d

.67

(a) Constraint network.

d

b c

a b c d

(b) The resulting partition hierarchy.

Figure 6.1: A small constraint network and the resulting partition.

When an Assignment message is sent down in the partition hierarchy, it is con-
tinuously forwarded down until it reaches a primitive agent. Each representative
agent randomly decides, to which child agent the message will be sent.

Nogood messages are sent among primitive agents, in a direction opposite to
the partial assignments growth. When a primitive agent discovers that a value in
its domain is incompatible with a given PA, the chronologically first conflicting
agent in the PA is recorded as the explanation for this failure. When the domain
is emptied, these explanations are united with explanations received in Nogood
messages (for the same PA), and the most recent agent in the combined explanation
is designated as the “culprit”. The united explanation (excluding the “culprit”) is
then sent to this agent in a Nogood message [5, 9, 33].

In a problem with n agents, n independent partial assignments can be grown,
with nogoods back-jumping to failure culprits. The first PA which grows to the
full solution, or results in an empty nogood, ends the search process, which is
reminiscent of CONCDB [33].

6.2 DesRS survey

Let’s return to the example in Section 4.1. The constraint network and the resulting
partition hierarchy of the graph-coloring problem are reproduced in Figure 6.1.

Each agent now initiates a backtracking process. We will explore the process
originating at leaf a. The flow of the growing partial assignment can be summarized
as follows.

Leaf a sends an initial assignment 〈a = 1〉 to its leader b. Leader b forwards
this partial assignment to leaf b, which then grows it (consistently), and sends
〈a = 1,b = 2〉 up in the partition hierarchy. Leader b now forwards the assignment
to leaf d via leaders d and c (the latter arbitrarily chooses to forward the assignment
to leaf d and not to leaf c). Leaf d then grows the assignment, and forwards 〈a =
1,b = 2,d = 1〉 to leader c, which further forwards it to leaf c.

Leaf c grows the assignment, and sends a complete solution 〈a = 1,b = 2,d =
1,c = 3〉 to leader c, which forwards it to the user via leader d.

6.3. ALGORITHM PRIMITIVES 51

Note that no backtracking happened here. Backtracking details are described
in Section 6.4.

6.3 Algorithm primitives

During the execution of the algorithm, the following message types are in use:

• Assignment〈t, id, PA, primitive〉: a partial solution which is sent by agent t
up in the partition hierarchy. The id is unique for the growing PA, which
contains the ordered partial assignment. The boolean field primitive indicates
whether the message has been sent to a primitive agent (a leaf in the group
partitioning hierarchy), or its role as a representative agent (non-leaf).

• Nogood〈id, exp〉: a resolved nogood sent to the “culprit” agent. The id field
is equal to the id in the Assignment messages with the corresponding (incon-
sistent) PA, and exp is the resolved explanation, which in DESRS is a set of
agents.

Algorithm 4.1 has been implicitly modified to produce the following additional
output for each representative agent:

• c0,c1: child agents.

• prim0,prim1: whether the corresponding child agent is a primitive agent (a
leaf in the hierarchy).

On the other hand, GROUP-PARTITION() need not produce pairs (the list of con-
straints between the two sub-components).

A map Id-Map is maintained in each primitive agent, holding mappings from
ids to tuples of the form 〈PA,values,exp〉. Here, PA is the partial assignment, as it
was received from the parent agent, values is the current untried subset of values
in the domain, and exp is the growing explanation, which will be used if and when
values becomes empty.

6.4 DESRS algorithm in detail

At the end of the partition phase, described in Chapter 4, all agents receive a Search
message (tagged with level p). Then, each agent bootstraps its independent search
process by sending itself a uniquely-identified Assignment message with an empty
partial assignment.

At the same time, the level is also changed to s, which is the distinctive level
for the solving phase of DESRS.

The search process starts when the primitive agents receive their corresponding
empty partial assignments. Each primitive agent s initializes the {s→ 〈NIL,D, /0〉}

52 CHAPTER 6. DESCENDING REQUIREMENTS SEARCH

Algorithm 6.1: DESRS-SOLVE(s): Search for a solution.
Input : agent s, output from Algorithm 4.1, domain D, child agents c0,1, primitive

child indicators prim0,1
Output: a global solution is sent to USER
Locals : Id-Map[·]
loop forever do1

switch RECEIVE() do2
B Continuing Algorithm 4.1...

case Search3
level← s4
SEND(s, Assignment〈s, s, NIL, TRUE〉)5

case Assignment〈t, id, PA, primitive〉6
if primitive then7

Id-Map[id]← 〈PA,D, /0〉8
else if ∃i : t = ci then9

if c1−i ∈ PA then10
SEND(leader, Assignment〈s, id, PA, FALSE〉)11

else12
SEND(c1−i, Assignment〈s, id, PA, prim1−i〉)13

else14
i← RANDOM({0,1})15
SEND(ci, Assignment〈s, id, PA, primi〉)16

case Nogood〈id, exp〉17
〈·, ·,united-exp〉 ← Id-Map[id]18
united-exp← united-exp∪exp19

case Assignment〈·, id, ·, TRUE〉 ∨ Nogood〈id, ·〉20
〈PA,Values,exp〉 ← Id-Map[id]21
v← NIL22
while v = NIL ∧ Values 6= /0 do23

v← RANDOM(Values)24
Values← Values r{v}25
for (r = w) ∈ PA (left-to-right, neighbors of s only) do26

if CHECK(v, r, w) then27
exp← exp∪{r}28
v← NIL29
break30

if v 6= NIL then31
SEND(parent, Assignment〈s, id, 〈PA,(s = v)〉, FALSE〉)32

else if exp 6= /0 then33
for r ∈ PA (right-to-left) do34

if r ∈ exp then35
SEND(r, Nogood〈id, exp r{r}〉)36
break37

else38
SEND(USER, Nogood〈id, exp〉)39

6.5. ALGORITHM CORRECTNESS 53

mapping, where D is the value domain of s. The agent then grows the empty par-
tial assignment with a value from its domain, and sends the resulting Assignment
message to its parent.

Section 6.1 describes the flow of Assignment messages in the system. On their
way to a global solution, these messages pass through all primitive agents, which
reset the respective id-mappings, and try to grow the PAs by a value from their
domain. The initial partitioning aids in this process, since most of the constraints
are “pushed down” in the hierarchy, providing DESRS with early opportunities to
backtrack using Nogood messages. In other words, the partition of the constraints
network generates a distributed version of the fail-first heuristic.

The combined case in line 20 of Algorithm 6.1 describes what happens after
the initial processing of “primitive” Assignment and Nogood messages.

First, a value from the set of domain values corresponding to the given id is
picked, and removed from the set. If the value is in conflict with an agent in the
partial assignment, the chronologically earliest conflicting agent in the PA is added
to the growing explanation, and another domain value is attempted.

If a value has been picked, an Assignment message with the new value attached
to the partial assignment is sent up in the hierarchy. However, if the domain has
been emptied, nogood resolution is performed. In this resolution process, the most
recent agent in the corresponding explanation is designated as the culprit, and a
Nogood message is sent to this agent, with the resolved explanation. It is also
possible that the explanation is empty, in which case the current agent is the agent
which initialized the search process for the given id, and the constraints network
has no solution.

The reason for recording the chronologically earliest conflicting agent in the PA
in the explanation for removing a domain value is that “fixing” a value in chrono-
logically later conflicting agent by backtracking to it will not help — the earlier
agent will still conflict with the removed value in the current agent. On the other
hand, backtracking with a Nogood message to an agent which is not chronologi-
cally latest in the resolved explanation (when the value domain is emptied) would
make the search incomplete — the algorithm could miss possibly consistent partial
assignments [2].

In a network with n agents, USER will receive n (possibly equal) solutions. If
there are no solutions, USER will receive n empty nogoods.

6.5 Algorithm correctness

We now present an informal proof of the correctness of DESRS. We show that Al-
gorithm 6.1 indeed results in a correct solution (or an empty nogood when there is
no solution) sent to USER. We do not concern ourselves with iteration over all so-
lutions here — an extension of the algorithm that uses additional USER-originated
Nogood messages is quite straightforward.

Upon receiving the Search message (line 3), each agent sends itself an As-

54 CHAPTER 6. DESCENDING REQUIREMENTS SEARCH

signment message with a unique id (lines 4–5). From now on, processes involving
different ids are completely independent, since response messages are always sent
with the same id field as the received messages, and the only state is encapsulated
in the Id-Map mapping.

The Assignment messages received by representative agents (line 6) are routed
in such a way that no cycle is ever formed in the growing partial assignments: a
message from a child agent is sent either up in the hierarchy (lines 10–11), or to
the other child (lines 12–13), where it is consistently forwarded down to a leaf
(lines 14–16). As well, when an Assignment message is sent up in the hierarchy,
its PA field covers the whole component for which the sending representative agent
is responsible (this can be shown by induction on the number of agents covered by
the partial assignment).

Thus, each independent search process corresponds to a possible back-jumping
search in a centralized CSP with the same variables — see the discussion on no-
goods resolution in Section 6.4.

6.6 Experimental evaluation

Experimental evaluation of the DESRS algorithm has been conducted using an
asynchronous simulator. To simulate asynchronous agents, the simulator imple-
ments agents as Java threads. Threads (agents) run asynchronously, exchanging
messages. After the algorithm is initiated, agents block on incoming message
queues and become active when messages are received.

Experiments were conducted on random networks of constraints. The network
of constraints, in each of the experiments, is generated randomly by selecting the
probability p1 of a constraint among any pair of variables (constraint density) and
the probability p2, for the occurrence of a violation among two assignments of
values to a constrained pair of variables (constraint tightness) [17, 19].

The algorithm has been implemented in the same framework in which the other
algorithms, such as ABT, are already implemented, and thus confidence in an ad-
equate comparative evaluation can be established.

Figure 6.2 compares DESRS to ABT on a set of randomly generated problems
of moderate complexity (n = 10, |D| = 10, p1 = 0.5). Figure 6.3 compares the
same algorithms on a set of hard random problems (n = 20, |D|= 10, p1 = 0.4).

We see that DESRS outperforms ABT on all problems. This is true with re-
spect to both measures of performance — non-concurrent constraint checks [16]
and total number of messages. DESRS performs half the number of NCCCs than
ABT for the hardest problem instances with n = 10 agents. The same is true for
problems with n = 20 agents (Figure 6.3). The same advantage of a factor of two,
for DESRS over ABT, holds for the total number of messages sent (e.g., the net-
work load).

The DESRS algorithm uses multiple search processes to scan the search space
concurrently. Another DISCSP search algorithm also uses multiple search pro-

6.6. EXPERIMENTAL EVALUATION 55

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DesRS and ABT

DesRS
ABT

(a) Non-concurrent constraint checks.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DesRS and ABT

DesRS
ABT

(b) Total number of messages.

Figure 6.2: Comparing DESRS with ABT on random problems with 10 agents,
domain size of 10, and p1 = 0.5.

56 CHAPTER 6. DESCENDING REQUIREMENTS SEARCH

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DesRS and ABT

DesRS
ABT

(a) Non-concurrent constraint checks.

0

50000

100000

150000

200000

250000

300000

350000

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DesRS and ABT

DesRS
ABT

(b) Total number of messages.

Figure 6.3: Comparing DESRS with ABT on random problems with 20 agents,
domain size of 10, and p1 = 0.4.

6.7. COMPARISON WITH DISHS 57

cesses. CONCDB [33] generates search processes dynamically during search. Fig-
ures 6.4, 6.5 present the results of comparing DESRS to CONCDB. The perfor-
mance of DESRS is similar to CONCDB on the n = 10 agents problems with re-
spect to the number of non-concurrent constraint checks (Figure 6.2(a)) [16]. On
the other hand, DESRS performs about twice the number of constraint checks of
CONCDB in the phase transition region of the n = 20 problems set (Figure 6.3(a)),
and uses more messages than CONCDB in all problems.

It is interesting to investigate the impact of the partitioning heuristic on the
performance of the search algorithm. Figure 6.6 presents a comparison of DESRS
against ANTI-DESRS — algorithm similar to DESRS, but with the weights con-
trolling the partitioning reversed (during the groups partitioning phase). That is,
instead of pushing hard constraints down in the hierarchy, they are pushed up dur-
ing the execution of GROUP-PARTITION().

It is easy to see that the difference, especially in terms of constraint checks, is
large — good partitioning hierarchy is vital to the performance of DESRS.1

6.7 Comparison with DISHS

As Section 6.6 shows, DESRS performs much better than DISHS. The difference
is quite large, DISHS cannot even handle the hard problem set in which DESRS
outperforms ABT (i.e., 20 agents, Figure 6.3).

What are the reasons for this difference? DISHS operates on the premise that
concurrent production of independent partial assignments can be beneficial to the
distributed search process, if the agents network is optimally partitioned — even if
the cost of matching independent PAs can still be high.

However, DESRS seems to benefit from the concurrency of multiple search
processes without sacrificing the incremental construction of partial assignments.
Moreover, the randomization of the growing process of PAs after backtracking
brings stochastic properties to the algorithm (while still keeping it complete). Such
properties are known to improve performance of certain DISCSP topologies [30].

The comparative performance of DESRS, DISHS and ABT suggests that, while
exploiting concurrency of distributed search is important, incremental growth of
consistent assignments to the DISCSP remains paramount to the efficiency of
search process. This is also apparent for other concurrent search algorithms like
CONCDB [33], where multiple solutions are constructed incrementally.

6.8 Discussion

A new search algorithm for distributed constraint problems (DISCSPs) is pre-
sented. The new algorithm uses a hierarchy of groups of agents to partition the

1The results for DESRS differ from those in Figures 6.3 and 6.5 due to a different experimental
environment.

58 CHAPTER 6. DESCENDING REQUIREMENTS SEARCH

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DesRS and ConcDB

DesRS
ConcDB

(a) Non-concurrent constraint checks.

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DesRS and ConcDB

DesRS
ConcDB

(b) Total number of messages.

Figure 6.4: Comparing DESRS with CONCDB on random problems with 10
agents, domain size of 10, and p1 = 0.5.

6.8. DISCUSSION 59

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DesRS and ConcDB

DesRS
ConcDB

(a) Non-concurrent constraint checks.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DesRS and ConcDB

DesRS
ConcDB

(b) Total number of messages.

Figure 6.5: Comparing DESRS with CONCDB on random problems with 20
agents, domain size of 10, and p1 = 0.4.

60 CHAPTER 6. DESCENDING REQUIREMENTS SEARCH

100000

200000

300000

400000

500000

600000

0 0.2 0.4 0.6 0.8 1

N
C

C
C

s

p2

Constraint checks: DesRS and AntiDesRS

DesRS
AntiDesRS

(a) Non-concurrent constraint checks.

100000

300000

500000

700000

900000

0 0.2 0.4 0.6 0.8 1

M
es

sa
ge

s

p2

Messages: DesRS and AntiDesRS

DesRS
AntiDesRS

(b) Total number of messages.

Figure 6.6: Comparing DESRS with ANTI-DESRS on random problems with 20
agents, domain size of 10, and p1 = 0.4.

6.8. DISCUSSION 61

problem. Solutions are generated by multiple concurrent search processes, all co-
ordinated on the hierarchy of groups. Multiple agents initialize partial solutions
concurrently and send them to group leaders. Leaders of groups of agents coor-
dinate the generation of each solution by determining the groups that are merged
with partial solutions, to form larger solutions.

One can think of the hierarchical structure of groups as a means of defining a
partial order of search for the multiple search processes. The resulting algorithm
performs better than asynchronous backtracking (ABT). It performs half the num-
ber of non-concurrent constraints checks than ABT for hard instances of randomly
generated DISCSPs. It also sends half the number of messages than ABT for the
same problems.

Comparing DESRS to the best performing concurrent search algorithm, CON-
CDB, is less successful. For random DISCSPs with 20 agents, the run-time of
DESRS is longer than that of CONCDB. However, one has to bear in mind that
CONCDB takes advantage of communication among search processes. Specifi-
cally, such communication is used in terminating processes because of deadends
discovered by other search processes [33]. This option is in principle possible also
for DESRS. Leaders of groups could inform the search processes passing through
them about discovered Nogoods and terminate some of the partial assignments.
This potential improvement of DESRS is left for a future study.

62 CHAPTER 6. DESCENDING REQUIREMENTS SEARCH

Chapter 7

Other Applications of
Partitioning

The partitioning phase has been used in order to organize agents performing a
DISCSP search. The resulting hierarchical grouping was aimed at improving the
concurrency of constructing a global solution for the DISCSP. In this chapter we
explore other possibilities for applications of the group partitioning algorithm. We
consider group partitioning as detached from the search process, and view it sepa-
rately.

Both search algorithms proposed in this thesis, DISHS and DESRS, are com-
posed of two phases. In the first phase, the agents form a hierarchy of enclos-
ing groups, with representatives selected for each group. The second phase is the
search itself, pruning inconsistent solutions, while taking advantage of the hierar-
chy built during the partitioning phase.

These phases are actually independent. Chapter 4 describes the input and out-
put of Algorithm 4.1. The input to the distributed algorithm is specified by:

• The topology is of a connected undirected graph.

• Each agent has a list of its immediate neighbors.

• Each connection (edge) between agents is assigned a weight.

• A method of combining weights of several edges between groups of agents.

• Unrestricted communication — each agent can send a message to any other
agent.

The output after termination of GROUP-PARTITION(), indicated by a Search
message received by all agents, is:

• A binary hierarchy of groups is established.

• Each group is either a singleton, or is composed of two subgroups.

63

64 CHAPTER 7. OTHER APPLICATIONS OF PARTITIONING

• Some of the agents are designated as representative agents — leaders of a
group.

• Each agent, composing a singleton group, knows its parent — the represen-
tative agent of the enclosing group.

• Each representative agent knows its leader — the representative agent of
the enclosing group. The representative agent also knows its children, and
whether they are also representatives, or leafs.

• Each representative agent holds the list of edges between its two subgroups.

• Each representative agent holds the list of agents of its groups.

• The resulting hierarchy has a bias towards connections (primitive or aggre-
gate, combining several primitive edges) with high weight remaining at the
low levels of the hierarchy.

The group partitioning algorithm easily accommodates large graphs. Figure 7.1
shows the result of running the algorithm on a 100-nodes network of agents.

The process of partitioning into a hierarchy of groups can be applied to other
domains, where connectivity plays a primary role. An example of such a domain is
the area of social networks [3]. Consider a network of people, where mutual ties are
represented by edges with a weight in some interval. These edges can, for example,
represent amounts of phone conversations between pairs of people. Such a network
will exhibit the properties identified above as necessary for Algorithm 4.1:

• The topology of connections among agents (people) connection topology
is that of a connected undirected graph. It is reasonable to assume that two
people will view the connection between them (or absence of such) as having
the same weight. Also, it is probably not interesting to analyze unconnected
parts of a social network together, and the network can be assumed to be
connected, without loss of generality.

• Each agent has a list of its immediate neighbors: each person knows with
whom she regularly converses by phone.

• Each connection (edge) between agents is assigned a weight. In our appli-
cation, the weight can be the daily proportion of the time during which two
given persons talk on the phone.

• A method of combining weights of several edges between groups of agents:
weights multiplication seems to suit this purpose well.

• Unrestricted communication — each agent can send a message to any other
agent. This is possible if, for example, agent code is executed by cell phone
software.

65

95

97

0.0010455937324813358

90

1.0368162744960456E-9

95

87

45

0.482

89
100

0.126793204224

72

0.015942896112328728

89

59

0.4868

0.0604678125735936

87

83

77

9.134406323794838E-10

96
4.171703107697483E-32

83
4

57

0.5136

79

36

0.06094609067289601

64
0.0035840655023560925

79

10

0.4784

38

76

0.4936

84

0.06163457200768

38

81

75

0.4828

0.060359394557952

81

85
3.808860958973553E-115

7770
37

0.478

93

0.0603441321984

93

25

0.5004

75

6

0.5016

71

0.11839161087999998

4.969129536424967E-4

71

32

0.4728

67

1.942632905914541E-20

67
28

35

0.4816

607.206766140620752E-9

36 20

33

0.4676

63

0.4812

63

73

0.0018774726000492861

73

52

53
0.4808

59

91

0.00372590416697179

8.926686716333359E-7

91

47

80

0.478

99

88

9.118334641408226E-4

4.4645947016152665E-10

99

50

78
0.4816

65

7

0.476

690.4996

65

61
580.06143511306240001

0.0038121167001763634

61

48
0.4736

0.063373517807616

53

140.4812

0.12135225599999999

57

1

0.4812

49

0.06318912384583679

49 2 0.5076

55

86

0.4836

54
0.131072815104

55

22

0.4708

22

26

0.119668182272

26

17

0.4768

45

44

0.4864

51
0.4836

51

0.06176926986854401

47

0.059028379199999995

20

43

0.06383732915404801

740.0643529234589696

43

15

0.4888

41

46

0.4796

0.12053599999999999

41

33

21
0.4868

39
0.4796

39

31

30

0.4736

0.05900746312581119

31

25

239.81150605572107E-4

23
19

42

0.4712

18
0.5024

18

17

0.1224068768

37

8

0.47

11

66

0.4912

0.5032

11

0.4932

35

9

98

0.0575468383666176

4.912996599681597E-4

9

3

0.4848

1

16
0.4752

16

85

62
0.4816

100

29

68

0.4812

0.1305770544

29

96

92

0.4868

27
0.4704

0.11549399500799999

27

94

1.1064723215585974E-31

88

5

0.486

14

0.008263458138289322

86

21

0.06212672922368001

78

24

0.4908

70

10

76

19

68

15

62

7

52

5

48

3

44 92

42

13

0.4756

13

50

82

0.4804

82

80

34

0.4816

72

66

58

56

0.4928

3.8632850361638015E-9

69

56

46

40

0.4732

98

40

54

84

60
12

0.4852

12

30

24

8

6

28

4

2

32

34

64 7.29193967958034E-27

74

90

97

Figure 7.1: Partition of a randomly generated problem with 100 agents, with p1 =
0.4 and p2 = 0.5. Each virtual constraint weight between the sub-components of
a representative agent is shown on its outgoing edge. Representative agent 85 is at
the root of the partition hierarchy.

66 CHAPTER 7. OTHER APPLICATIONS OF PARTITIONING

Moreover, since the algorithm is concurrent and consumes few resources, it can
be scheduled to run on all agents as frequently as necessary in order to accommo-
date social network updates. Interesting applications of resulting hierarchies and
emerging group leaders can be considered.

Chapter 8

Conclusions

We presented two new distributed search algorithms for Distributed CSPs in this
work. The algorithms are two-phase, where the first phase partitions the constraints
network, and the second phase searches for solutions while exploiting the topolog-
ical landscape created by the first phase.

The first part of both algorithms partitions the distributed constraints network
into a binary tree of groups. The distributed partition algorithm uses a heuristic
that selects to join neighbors that are strongly constrained, into groups. This is
done concurrently at all levels of the hierarchy.

In DISHS, search is performed concurrently on disjoint parts of the global
search space, by agents that constitute these parts. Agents form a hierarchy of
groups and each group generates consistent partial solutions. Partial solutions are
produced concurrently and are combined into consistent global solutions by agents
that are higher in the hierarchy. The process stops when the top-level agent, the
leader of all groups, reports either a solution or a failure.

In DESRS, concurrent independent backtracking search processes grow partial
assignments along a hierarchy of agent groups, with each agent participating in
multiple search processes. Stochastic choices for the order of assigning agents are
taken after backtracking, securing the growing partial assignments from stalling in
local minima.

The first algorithm, DISHS, did not provide satisfactory results. We specu-
lated that this is an indication that some form of backtracking is necessary for good
performance of DISCSP algorithms. We have also used DISHS to show that the
group partitioning phase is vital, in the sense that reversing the neighbors pref-
erence ordering in the algorithm completely deteriorates the performance of the
search phase.

To alleviate the shortcomings of the first algorithm, the second search algo-
rithm, DESRS, was presented. In the new algorithm, solutions are generated by
multiple concurrent search processes, all coordinated on the hierarchy of groups.
Multiple agents initialize partial solutions concurrently and send them to group
leaders. Leaders of groups of agents coordinate the generation of each solution

67

68 CHAPTER 8. CONCLUSIONS

by determining the groups that are merged with partial solutions, to form larger
solutions.

In DESRS, the hierarchical structure of groups can be viewed as a means of
defining a partial order of search for the multiple search processes. The resulting
algorithm performs better than asynchronous backtracking (ABT). It performs half
the number of non-concurrent constraints checks than ABT for hard instances of
randomly generated DISCSPs. It also sends half the number of messages than
ABT for the same problems.

We have also evaluated DESRS against the best performing concurrent search
algorithm, CONCDB. For random DISCSPs with 20 agents, the run-time of DESRS
is longer than that of CONCDB. However, one has to bear in mind that CON-
CDB takes advantage of communication among search processes. Specifically,
such communication is used in terminating processes because of deadends discov-
ered by other search processes. This option is in principle possible also for DESRS.
This potential improvement of DESRS is left for a future study.

Finally, the group partitioning approach is not limited to distributed constraint
satisfaction algorithms. We have generalized this approach, and touched upon
other possible areas of its applications, such as social networks.

Appendix A

A Group Partitioning Messages
Log

Messages received during group partitioning
1 Log of *received* messages.
2 "Join<1> -> 3" means that agent 3 received Join<1> message
3 (from agent 1).
4 NoJoin and Search messages also have the source specified for clarity
5 Components lists omit 0-level neighbors field, for brevity.
6 Level of -1 is level "p".
7 ---
8

9 Leader<1, {(4,0.64) (9,0.66) (6,0.62) (3,0.62)}, {(1,N,0)}, true, 0> -> 1
10 (level -1)
11 Leader<2, {(4,0.61) (7,0.6) (10,0.56)}, {(2,N,0)}, true, 0> -> 2
12 (level -1)
13 Leader<3, {(9,0.6) (6,0.58) (1,0.62) (7,0.59) (5,0.63)}, {(3,N,0)}, true,
14 0> -> 3 (level -1)
15 Join<1> -> 3 (level 0)
16 NoJoin<3> -> 1 (level 0)
17 1->3 JOIN ATTEMPT REPEATED ONCE
18 Leader<4, {(2,0.61) (9,0.62) (1,0.64) (7,0.6) (5,0.59)}, {(4,N,0)}, true,
19 0> -> 4 (level -1)
20 Leader<5, {(4,0.59) (9,0.69) (3,0.63)}, {(5,N,0)}, true, 0> -> 5
21 (level -1)
22 Join<5> -> 4 (level 0)
23 Join<4> -> 5 (level 0)
24 Components<4, {(4,N,0)}> -> 5 (level 0)
25 Components<5, {(5,N,0)}> -> 4 (level 0)
26 Leader<6, {(1,0.62) (3,0.58) (7,0.53) (10,0.6)}, {(6,N,0)}, true, 0> -> 6
27 (level -1)
28 Join<3> -> 6 (level 0)
29 NoJoin<6> -> 3 (level 0)
30 Join<1> -> 6 (level 0)
31 NoJoin<6> -> 1 (level 0)
32 Join<1> -> 3 (level 0)
33 NoJoin<3> -> 1 (level 0)
34 1->3, 1->6, 3->6 JOIN ATTEMPTS REPEATED 126 TIMES
35 Leader<7, {(2,0.6) (4,0.6) (6,0.53) (3,0.59)}, {(7,N,0)}, true, 0> -> 7
36 (level -1)
37 Join<6> -> 7 (level 0)
38 Leader<8, {}, {(8,N,0)}, true, 0> -> 8 (level -1)
39 Search<8> -> 8 (level -1)
40 Leader<9, {(4,0.62) (1,0.66) (3,0.6) (5,0.69)}, {(9,N,0)}, true, 0> -> 9

69

70 APPENDIX A. A GROUP PARTITIONING MESSAGES LOG

41 (level -1)
42 Join<9> -> 3 (level 0)
43 NoJoin<3> -> 9 (level 0)
44 9->3 JOIN ATTEMPTS REPEATED 7 TIMES
45 Done<4, 4> -> 2 (level 0)
46 Done<4, 4> -> 4 (level 0)
47 Done<4, 4> -> 1 (level 0)
48 Done<4, 4> -> 5 (level 0)
49 Done<4, 4> -> 7 (level 0)
50 Done<5, 4> -> 4 (level 0)
51 Done<5, 4> -> 5 (level 0)
52 Done<4, 4> -> 9 (level 0)
53 Done<5, 4> -> 9 (level 0)
54 Done<5, 4> -> 3 (level 0)
55 Join<9> -> 3 (level 0)
56 NoJoin<3> -> 9 (level 0)
57 9->3 JOIN ATTEMPTS REPEATED 22 TIMES
58 Join<9> -> 3 (level 0)
59 Leader<10, {(2,0.56) (6,0.6)}, {(10,N,0)}, true, 0> -> 10 (level -1)
60 Join<3> -> 6 (level 0)
61 NoJoin<3> -> 9 (level 0)
62 Join<10> -> 2 (level 0)
63 Join<2> -> 10 (level 0)
64 NoJoin<6> -> 3 (level 0)
65 Join<1> -> 6 (level 0)
66 Join<9> -> 3 (level 0)
67 Components<10, {(10,N,0)}> -> 2 (level 0)
68 Components<2, {(2,N,0)}> -> 10 (level 0)
69 Done<2, 2> -> 2 (level 0)
70 Done<2, 2> -> 4 (level 0)
71 Done<2, 2> -> 7 (level 0)
72 NoJoin<3> -> 9 (level 0)
73 NoJoin<6> -> 1 (level 0)
74 Join<7> -> 6 (level 0)
75 Join<9> -> 3 (level 0)
76 Done<10, 2> -> 2 (level 0)
77 Done<2, 2> -> 10 (level 0)
78 NoJoin<3> -> 9 (level 0)
79 Components<6, {(6,N,0)}> -> 7 (level 0)
80 Components<7, {(7,N,0)}> -> 6 (level 0)
81 Done<10, 2> -> 10 (level 0)
82 Done<7, 6> -> 2 (level 0)
83 Done<7, 6> -> 4 (level 0)
84 Done<7, 6> -> 7 (level 0)
85 Done<7, 6> -> 3 (level 0)
86 Done<6, 6> -> 1 (level 0)
87 Join<3> -> 6 (level 0)
88 Leader<2, {(4,0.61) (6,0.6)}, {(2,N,1)}, false, 1> -> 2 (level -1)
89 Done<6, 6> -> 7 (level 0)
90 Join<9> -> 3 (level 0)
91 Done<6, 6> -> 10 (level 0)
92 Done<6, 6> -> 3 (level 0)
93 Join<1> -> 6 (level 0)
94 NoJoin<6> -> 3 (level 0)
95 NoJoin<3> -> 9 (level 0)
96 Leader<10, {(6,0.6)}, {(10,N,0)}, false, 1> -> 2 (level -1)
97 NoJoin<6> -> 1 (level 0)
98 Done<10, 2> -> 6 (level 0)
99 Join<1> -> 3 (level 0)

100 Join<3> -> 9 (level 0)
101 NoJoin<3> -> 1 (level 0)
102 Join<9> -> 3 (level 0)

71

103 Done<7, 6> -> 6 (level 0)
104 Join<1> -> 3 (level 0)
105 Components<3, {(3,N,0)}> -> 9 (level 0)
106 NoJoin<3> -> 1 (level 0)
107 Components<9, {(9,N,0)}> -> 3 (level 0)
108 Done<6, 6> -> 6 (level 0)
109 Done<3, 3> -> 1 (level 0)
110 Done<3, 3> -> 7 (level 0)
111 Done<3, 3> -> 5 (level 0)
112 Join<1> -> 3 (level 0)
113 Done<9, 3> -> 4 (level 0)
114 Done<3, 3> -> 9 (level 0)
115 Done<9, 3> -> 1 (level 0)
116 Done<9, 3> -> 5 (level 0)
117 Done<3, 3> -> 3 (level 0)
118 Done<3, 3> -> 6 (level 0)
119 NoJoin<3> -> 1 (level 0)
120 Done<9, 3> -> 3 (level 0)
121 Done<9, 3> -> 9 (level 0)
122 Join<1> -> 1 (level 0)
123 Components<1, {(1,N,0)}> -> 1 (level 0)
124 Done<1, 1> -> 4 (level 0)
125 Leader<5, {(3,0.4347)}, {(5,N,0)}, false, 1> -> 4 (level -1)
126 Leader<4, {(2,0.61) (6,0.6) (1,0.64) (3,0.62)}, {(4,N,1)}, false, 1> -> 4
127 (level -1)
128 Done<1, 1> -> 1 (level 0)
129 Leader<1, {(4,0.64) (6,0.62) (3,0.4092)}, {(1,N,0)}, true, 1> -> 1
130 (level -1)
131 Done<1, 1> -> 3 (level 0)
132 Leader<3, {(4,0.63) (6,0.34219999999999995) (1,0.62)}, {(3,N,1)}, false,
133 1> -> 3 (level -1)
134 Done<1, 1> -> 9 (level 0)
135 Leader<9, {(4,0.42779999999999996) (1,0.66)}, {(9,N,0)}, false, 1> -> 3
136 (level -1)
137 Join<3> -> 4 (level 1)
138 Join<4> -> 3 (level 1)
139 Components<3, {(9,N,0) (3,N,1)}> -> 4 (level 1)
140 Done<4, 5> -> 2 (level 1)
141 Done<4, 5> -> 4 (level 1)
142 Done<4, 5> -> 1 (level 1)
143 Join<1> -> 3 (level 1)
144 NoJoin<3> -> 1 (level 1)
145 Components<4, {(5,N,0) (4,N,1)}> -> 3 (level 1)
146 Done<3, 5> -> 4 (level 1)
147 Done<3, 5> -> 1 (level 1)
148 Done<4, 5> -> 3 (level 1)
149 Join<1> -> 3 (level 1)
150 NoJoin<3> -> 1 (level 1)
151 Done<3, 5> -> 3 (level 1)
152 Done<1, 1> -> 6 (level 0)
153 Leader<7, {(2,0.6) (4,0.6) (3,0.59)}, {(7,N,0)}, false, 1> -> 6
154 (level -1)
155 Leader<6, {(2,0.6) (1,0.62) (3,0.58)}, {(6,N,1)}, false, 1> -> 6
156 (level -1)
157 Join<6> -> 3 (level 1)
158 Join<2> -> 6 (level 1)
159 NoJoin<6> -> 2 (level 1)
160 Done<4, 5> -> 6 (level 1)
161 Done<3, 5> -> 6 (level 1)
162 Join<1> -> 6 (level 1)
163 NoJoin<6> -> 1 (level 1)
164 NoJoin<3> -> 6 (level 1)

72 APPENDIX A. A GROUP PARTITIONING MESSAGES LOG

165 Join<6> -> 2 (level 1)
166 Join<2> -> 6 (level 1)
167 Components<6, {(7,N,0) (6,N,1)}> -> 2 (level 1)
168 Done<2, 7> -> 2 (level 1)
169 Done<2, 7> -> 4 (level 1)
170 Join<1> -> 6 (level 1)
171 NoJoin<6> -> 1 (level 1)
172 Components<2, {(2,N,1) (10,N,0)}> -> 6 (level 1)
173 Done<6, 7> -> 2 (level 1)
174 Leader<2, {(5,0.61)}, {(2,N,1) (10,N,0)}, false, 2> -> 7 (level -1)
175 Done<6, 7> -> 4 (level 1)
176 Done<6, 7> -> 1 (level 1)
177 Done<6, 7> -> 3 (level 1)
178 Done<2, 7> -> 6 (level 1)
179 Join<1> -> 6 (level 1)
180 NoJoin<6> -> 1 (level 1)
181 Join<1> -> 1 (level 1)
182 Components<1, {(1,N,0)}> -> 1 (level 1)
183 Done<1, 1> -> 4 (level 1)
184 Done<1, 1> -> 1 (level 1)
185 Leader<1, {(7,0.62) (5,0.261888)}, {(1,N,0)}, true, 2> -> 1 (level -1)
186 Leader<4, {(1,0.64) (7,0.366)}, {(5,N,2) (4,N,1)}, false, 2> -> 5
187 (level -1)
188 Done<1, 1> -> 3 (level 1)
189 Leader<3, {(1,0.4092) (7,0.34219999999999995)}, {(9,N,0) (3,N,1)}, false,
190 2> -> 5 (level -1)
191 Join<1> -> 5 (level 2)
192 NoJoin<5> -> 1 (level 2)
193 1->5 JOIN ATTEMPTS REPEATED 59 TIMES
194 Done<6, 7> -> 6 (level 1)
195 1->5 JOIN ATTEMPTS REPEATED 82 TIMES
196 Done<1, 1> -> 6 (level 1)
197 1->5 JOIN ATTEMPTS REPEATED 41 TIME
198 Leader<6, {(1,0.62) (5,0.20531999999999997)}, {(7,N,2) (6,N,1)}, false,
199 2> -> 7 (level -1)
200 Join<5> -> 7 (level 2)
201 Join<1> -> 5 (level 2)
202 NoJoin<5> -> 1 (level 2)
203 Join<7> -> 5 (level 2)
204 Components<5, {(9,N,0) (3,N,1) (5,N,2) (4,N,1)}> -> 7 (level 2)
205 Done<7, 9> -> 7 (level 2)
206 Done<7, 9> -> 1 (level 2)
207 Components<7, {(2,N,1) (7,N,2) (10,N,0) (6,N,1)}> -> 5 (level 2)
208 Done<5, 9> -> 1 (level 2)
209 Done<5, 9> -> 7 (level 2)
210 Join<1> -> 5 (level 2)
211 NoJoin<5> -> 1 (level 2)
212 Join<1> -> 1 (level 2)
213 Components<1, {(1,N,0)}> -> 1 (level 2)
214 Done<1, 1> -> 7 (level 2)
215 Leader<7, {(1,0.62)}, {(2,N,1) (7,N,2) (10,N,0) (6,N,1)}, false, 3> -> 9
216 (level -1)
217 Done<1, 1> -> 1 (level 2)
218 Leader<1, {(9,0.16237056)}, {(1,N,0)}, true, 3> -> 1 (level -1)
219 Done<7, 9> -> 5 (level 2)
220 Done<5, 9> -> 5 (level 2)
221 Done<1, 1> -> 5 (level 2)
222 Leader<5, {(1,0.261888)}, {(3,N,1) (5,N,2) (9,N,3) (4,N,1)}, false, 3>
223 -> 9 (level -1)
224 Join<1> -> 9 (level 3)
225 Join<9> -> 1 (level 3)
226 Components<1, {(1,N,0)}> -> 9 (level 3)

73

227 Done<9, 1> -> 9 (level 3)
228 Components<9, {(2,N,1) (3,N,1) (5,N,2) (9,N,3) (7,N,2) (6,N,1) (10,N,0)
229 (4,N,1)}> -> 1 (level 3)
230 Done<1, 1> -> 9 (level 3)
231 Done<9, 1> -> 1 (level 3)
232 Done<1, 1> -> 1 (level 3)
233 Leader<9, {}, {(2,N,1) (3,N,1) (5,N,2) (9,N,3) (7,N,2) (6,N,1) (10,N,0)
234 (4,N,1)}, false, 4> -> 1 (level -1)
235 Leader<1, {}, {(1,N,4)}, false, 4> -> 1 (level -1)
236 Search<1> -> 2 (level -1)
237 Search<1> -> 3 (level -1)
238 Search<1> -> 9 (level -1)
239 Search<1> -> 7 (level -1)
240 Search<1> -> 10 (level -1)
241 Search<1> -> 4 (level -1)
242 Search<1> -> 1 (level -1)
243 Search<1> -> 5 (level -1)
244 Search<1> -> 6 (level -1)

74 APPENDIX A. A GROUP PARTITIONING MESSAGES LOG

Appendix B

Operations on Complete Binary
Tree

Algorithm B.1: CT-ACCESS(T, cap, r, i): Access the ith element of a com-
plete binary tree.

Input : tree T, last row capacity cap, last row count r, node pre-order index i
Output: requested node is returned
Locals : P← NIL

while i 6= 0 do1
P← T2
i← i−13
cap← cap/24
rleft←min{r,cap}5
left← cap−1+ rleft6
if i < left then7

T← Tleft8
else9

T← Tright10
i← i− left11
r← r− rleft12

return 〈T,P〉13

75

76 APPENDIX B. OPERATIONS ON COMPLETE BINARY TREE

Algorithm B.2: CT-REMOVE(T, cap, r, i): Remove the ith element from a
complete binary tree.

Input : tree T, last row capacity cap, last row count r, node pre-order index i
Output: requested node is removed from the tree, and its value is returned

〈PS,S〉 ← CT-ACCESS(T, cap, r, i)1
〈PQ,Q〉 ← CT-ACCESS(T, cap, r, cap +r-2)2
Qchildren← Schildren3
PSchildren[S]← Q4
PQchildren[Q]← NIL5
r← r−16
if r = 0 then7

r← cap← bcap/2c8
return 〈Sinfo,cap, r〉9

Algorithm B.3: CT-ADD(T, cap, r, info): Add an element to a complete
binary tree.

Input : tree T, last row capacity cap, last row count r, node value info
Output: requested node is returned
Locals : P← NIL, S← NEW-NODE(info)

r← (r mod cap)+11
if r = 1 then2

cap← 2 · cap3
T’← T, r’← r, cap’← cap4
if T = NIL then5

T’← S6
cap← 17

else8
while T 6= NIL do9

P← T10
cap← cap/211
if r≤ cap then12

T← Tleft13
else14

T← Tright15
r← r− cap16

Pchildren← Pchildren∪{S}17
return 〈T’,cap’, r’〉18

Bibliography

[1] Slim Abdennadher and Hans Schlenker. Nurse scheduling using constraint
logic programming. In Proceedings of the Eleventh Annual Conference on
Innovative Applications of Artificial Intelligence, pages 838–843, Orlando,
Florida, USA, July 1999.

[2] Andrew Baker. Intelligent Backtracking on Constraint Satisfaction Problems:
Experimental and Theoretical Results. PhD thesis, University of Oregon,
1995.

[3] John Barnes. Class and committees in a Norwegian island parish. Human
Relations, 7:39–58, February 1954.

[4] Christian Bessière, Arnold Maestre, and Pedro Meseguer. Distributed dy-
namic backtracking. In Notes of the IJCAI’01 Workshop on Distributed Con-
straint Reasoning, pages 9–16, Seattle, Washington, USA, 2001.

[5] Christian Bessière, Arnold Maestre, Ismel Brito, and Pedro Meseguer. Asyn-
chronous backtracking without adding links: A new member in the ABT fam-
ily. Artificial Intelligence, 161(1–2):7–24, January 2005.

[6] Ismel Brito and Pedro Meseguer. Distributed forward checking. In Principles
and Practice of Constraint Programming — CP 2003, volume 2833 of Lec-
ture Notes in Computer Science, pages 801–806, Kinsale, Ireland, September
2003.

[7] Rina Dechter. Constraint Processing. Morgan Kaufmann, May 2003. ISBN
1-558-60890-7.

[8] Rina Dechter and Judea Pearl. Network-based heuristics for constraint satis-
faction problems. Artificial Intelligence, 34(1):1–38, December 1987.

[9] Matthew Ginsberg. Dynamic backtracking. Artificial Intelligence Research,
1:25–46, August 1993.

[10] Youssef Hamadi, Christian Bessière, and Joël Quinqueton. Backtracking in
distributed constraint networks. In Proceedings of the Thirteenth European
Conference on Artificial Intelligence, pages 219–223, Brighton, UK, August
1998.

77

78 BIBLIOGRAPHY

[11] Kazuyoshi Honda and Fumio Mizoguchi. Constraint-based approach for au-
tomatic spatial layout planning. In Proceedings of the Eleventh Conference
on Artificial Intelligence for Applications, pages 38–45, Los Angeles, Cali-
fornia, USA, February 1995.

[12] Eliezer Kaplansky and Amnon Meisels. Distributed personnel scheduling
— negotiation among scheduling agents. Annals of Operations Research,
2006. To appear, http://www.cs.bgu.ac.il/~am/My_Papers/
DisETP_Annals_OR.pdf.

[13] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communication of the ACM, 21(7):558–565, July 1978.

[14] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, April 1997. ISBN
1-558-60348-4.

[15] Amnon Meisels. Distributed constraints: Algorithms, performance, commu-
nication. In CP-2004: Tutorials, Toronto, Canada, September 2004.

[16] Amnon Meisels, Eliezer Kaplansky, Igor Razgon, and Roie Zivan. Com-
paring performance of distributed constraints processing algorithms. In Pro-
ceedings of the Third Workshop on Distributed Constraint Reasoning, pages
86–93, Bologna, Italy, July 2002.

[17] Patrick Prosser. An empirical study of phase transitions in binary constraint
satisfaction problems. Artificial Intelligence, 81(1–2):81–109, March 1996.

[18] Helmut Simonis. Sudoku as a constraint problem. In Proceedings of the
Fourth International Workshop on Modelling and Reformulating Constraint
Satisfaction Problems, pages 13–27, Barcelona, Spain, October 2005.

[19] Barbara Smith and Martin Dyer. Locating the phase transition in binary con-
straint satisfaction problems. Artificial Intelligence, 81(1–2):155–181, March
1996.

[20] Gadi Solotorevsky, Ehud Gudes, and Amnon Meisels. Modeling and solving
distributed constraint satisfaction problems (DCSPs). In Proceedings of the
Second International Conference on Principles and Practice of Constraint
Programming, pages 561–562, Cambridge, Massachusetts, October 1996.

[21] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,
August 1993. ISBN 0-127-01610-4.

[22] Mark Wallace. Practical applications of constraint programming. Con-
straints, 1(1–2):139–168, September 1996.

[23] Makoto Yokoo. Distributed Constraint Satisfaction: Foundations of Co-
operation in Multi-Agent Systems. Springer Series on Agent Technology.
Springer-Verlag, Berlin, 2001.

http://www.cs.bgu.ac.il/~am/My_Papers/DisETP_Annals_OR.pdf
http://www.cs.bgu.ac.il/~am/My_Papers/DisETP_Annals_OR.pdf

BIBLIOGRAPHY 79

[24] Makoto Yokoo. Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems. In Proceedings of the First Inter-
national Conference on Principles and Practice of Constraint Programming,
volume 976 of Lecture Notes In Computer Science, pages 88–102, Cassis,
France, 1995.

[25] Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed con-
straint satisfaction: A review. Autonomous Agents and Multi-Agent Systems,
3(2):185–207, June 2000.

[26] Makoto Yokoo and Katsutoshi Hirayama. Distributed constraint satisfaction
algorithm for complex local problems. In Proceedings of the Third Interna-
tional Conference on Multi Agent Systems, pages 372–379, La Villette, Paris,
France, July 1998.

[27] Makoto Yokoo, Toru Ishida, Edmund Durfee, and Kazuhiro Kuwabara. Dis-
tributed constraint satisfaction for formalizing distributed problem solving.
In Proceedings of the Twelfth International Conference on Distributed Com-
puting Systems, pages 614–621, Yokohama, Japan, June 1992.

[28] Makoto Yokoo, Edmund Durfee, Toru Ishida, and Kazuhiro Kuwabara. The
distributed constraint satisfaction problem: Formalization and algorithms.
IEEE Transactions on Data and Knowledge Engineering, 10(5):673–685,
September 1998.

[29] Weixiong Zhang and Lars Wittenburg. Distributed breakout revisited. In
Eighteenth national conference on Artificial intelligence, pages 352–357, Ed-
monton, Alberta, Canada, 2002.

[30] Weixiong Zhang, Guandong Wang, and Lars Wittenburg. Distributed stochas-
tic search for constraint satisfaction and optimization: Parallelism, phase tran-
sitions and performance. In Workshop on Probabilistic Approaches in Search,
AAAI-2002, pages 53–59, Edmonton, Alberta, Canada, July 2002.

[31] Roie Zivan and Amnon Meisels. Concurrent backtrack search on DisCSPs. In
Proceedings of the Seventeenth International Florida Artificial Intelligence
Research Symposium Conference, pages 776–781, Miami Beach, Florida,
USA, May 2004.

[32] Roie Zivan and Amnon Meisels. Concurrent dynamic backtracking for dis-
tributed CSPs. In Principles and Practice of Constraint Programming — CP
2004, volume 3258 of Lecture Notes in Computer Science, pages 782–787,
Toronto, Canada, January 2004.

[33] Roie Zivan and Amnon Meisels. Concurrent search for distributed CSPs.
Artificial Intelligence, 170(4–5):440–461, April 2006.

	Introduction
	Background
	Constraint Satisfaction Problems (CSPs)
	Distributed CSPs
	Asynchronous Backtracking

	Distributed Hierarchical Search (DisHS)
	Overview of DisHS
	Constraint checks bounds

	Partitioning into a Hierarchy of Groups
	Partition survey
	Algorithm primitives
	Detailed description
	Algorithm correctness
	A partition example

	Concurrent, Hierarchical Search
	DisHS survey
	Algorithm primitives
	Algorithm analysis
	Algorithm optimization
	On-demand partial solutions
	Cached answers

	Algorithm correctness
	Experimental evaluation

	Descending Requirements Search
	General description
	DesRS survey
	Algorithm primitives
	DesRS algorithm in detail
	Algorithm correctness
	Experimental evaluation
	Comparison with DisHS
	Discussion

	Other Applications of Partitioning
	Conclusions
	A Group Partitioning Messages Log
	Operations on Complete Binary Tree

