
DASWIS’02 1

Discovering Associations in XML Data
Amnon Meisels, Michael Orlov and Tal Maor

Department of Computer Science
Ben-Gurion University of the Negev

Beer-Sheva 84105, Israel

am,orlovm,maort@cs.bgu.ac.il

Abstract—Knowledge inference from semi-structured data can utilize frequent sub structures, in addition to frequency of data items.
In fact, the working assumption of the present study is that frequent sub-trees of XML data represent sets of tags (objects) that are
meaningfully associated. A method for extracting frequent sub-trees from XML data is presented. It uses thresholds on frequencies
of paths and on the multiplicity of paths in the data. The frequent sub-trees are extracted and counted in a procedure that has

���������

complexity.
The data content of the extracted sub-trees, in the form of attribute values, is cast in tabular form. This enables a search for

associations in the extracted data. Thus, the complete procedure uses structure and content to extract association rules from semi-
structured data. A large industrial example is used to demonstrate the operation of the proposed method.

◆

1 INTRODUCTION

There are three main features, unique to XML files, that can
be explored for inferring knowledge:

	 The topology of the data — its graph structure
	 The frequency of tags and of graph-connected tags
	 The values of tags — attributes that are attached to tags
The main idea is that tags that are connected topologically,

i.e. belong to some subtree of the XML data, are ”meaning-
fully” related. For example, the tag ”staff-member” appears
frequently with a subtree that includes three branches with tags
”name” , ”phone” and ”office”. By discovering the fact that
this subtree repeats itself in the data one can infer that it is an
object with a meaning. Tags that are topologically connected
can be investigated further in two combined directions. One di-
rection looks at the meaning (i.e. natural-linguistic meaning)
of the tags found to be related. The other direction is based on
the statistical distribution of attributes value, within the set of
related tags. Values of Tags typically take the form of attributes
and it is common to have more than one attribute per tag.

Our proposed procedure for discovering sets of related tags,
is composed of two parts. One part calculates frequencies
of tags within paths on the XML data. It prunes its ”paths-
with-frequencies” by thresholding these frequencies relatively
to their topological connections. It also achieves a useful prun-
ing of paths by analyzing the distribution of frequencies of at-
tributes values. As will be seen in Sec. 3, the extraction of
attributes and values involves complex steps, sometimes using
text strings as key words for comparison of values.

The product of the first part of our proposed procedure is a set
of paths of tags that are frequent, their attribute values frequent,
and topologically connected on a path. These paths can now
be combined into subtrees and the frequency of these subtrees
in the XML data can be counted. Our proposed interpretation
is that frequent subtrees represent related objects (that contain
some knowledge). The issue of counting of subtrees is compu-

tationally complex and has been attempted by a few researchers
in the last two years. We believe that we improve on former
proposals for locating frequent subtrees in XML data, by using
the above three features together. Our proposed extraction and
counting algorithm behaves like the square of the number of
Tags. Former proposed algorithms [10] for counting subtrees,
creating all potential frequent k-trees, were clearly exponential.

2 RELATED WORK

There are two recent papers that address the search for fre-
quent objects in XML data [9], [10]. Wang and Liu used the
same algorithm in both papers. In [10] they searched on HTML
data that was constructed from a movies database (IMDB at
http://us.imdb.com), by an SQL query - “Take the 5000
movies that were made from 1950 to 1998 in the US”. The re-
sulting tree is assumed to be known, so that [10] counts sub-
trees that start from a selected node in the tree of records. The
present study assumes no knowledge about the structure of the
XML data and looks for frequent subtrees that start anywhere
on the data tree. Consequently, the definition of the term fre-
quent is different in [9], [10] and in the present study. WL start
from frequent paths with one leaf and construct all possible trees
with two leaves, three leaves, etc. This constructive algorithm
is obviously exponential in the number candidates and counts
all possible embeddings of subtrees [10]. In the proposed al-
gorithm of the present study, we construct subtrees bottom up,
starting with tags that were found frequent and adding to them
more frequent tags (see Sec. 3.3). As a result of this difference,
our proposed algorithm is not exponential.

Another recent study [6], [7] builds on top of the frequent
tree counting method of [10]. It looks for multi-level associa-
tion rules, extracted from the frequent trees of [10]. Frequent
subtrees have also been derived from HTML data, by [11].
Tags of HTML files are considered both as an attribute and
as a value. For example, in the tag <td>Position</td>,

Proceedings of the Third International Conference on Web Information Systems Engineering (Workshops)
0-7695-1754-3/02 $17.00 © 2002 IEEE

2 DASWIS’02

<td>IT Specialist</td>, the attribute name is Position
and its value is IT Specialist. With this approach, [11] names
construct trees of hierarchical classes, where leafs are text be-
tween two tags.

Starting from HTML data and removing structures that are
assumed to be irrelevant (such as images or sound) Laur et. al.
[5] also propose to count frequent subtrees. In [5], trees are
constructed from paths (i.e. one leaf) and combined to form
trees. The term frequent (similarly to [10]), is defined to be
the number of appearances of a path that is higher than a given
threshold. Each transaction contributes at most one count of the
tree frequency. In a subsequent stage, nodes of frequent trees
are organized and indexed according to their levels in the tree.

The most recent published method for find frequent sub-trees
in semi- structured data operates on either XML or HTML data
[3]. It finds a frequent pattern tree in the original data tree by
starting with one frequent node and expanding it recursively. A
pattern is defined to be frequent by [3] according to the count of
its root instances. Support is defined as the ratio of this count to
the number of nodes in the data and a threshold for support is
used to extract frequent patterns.

The path of a “web-surf”, that follows the list of sites a user
moved through, can also be analyzed for frequent sub paths.
Here, two somewhat different approaches appeared recently,
[8], [4]. One approach generates a tree per user, where all paths
generated by a single user over time are combined into a tree [4].
The other approach generates a tree for each instance of “web-
surfing”, thus creating a very large number of trees (paths) [8].
Chen et. al. [4] look for frequent instances of trees among users.
Here, frequent is taken to mean that the number of instances is
above a given threshold. Lin et. al. [8], on the other hand, define
frequency and support on web paths. Each visit contributes one
count to the support of a node in a given path. Frequent paths
are combined to construct frequent trees. The method proposed
in [8] combines two paths or trees if they differ by at most two
nodes.

3 EXTRACTING FREQUENT TREES

The proposed extraction procedure for frequent subtrees
starts with the extraction of frequent paths. All statistics use
the tags of the XML data and some thresholds on the frequency
of attribute values within tags. The paths are pruned and written
to a (meta-data) XML file. Next, a pruning tree is constructed
from the extracted paths. It includes all of the frequent paths,
but its parts do not necessarily exist in their simple form in the
data (see Sec. 3.2). The pruning tree is used to prune the data
tree. Each frequent path is scanned top-down on the full data
tree, to find all paths on the pruning tree that are connected to
it. The result of this procedure is a pruned data tree. A tree that
actually appears in its full form in the XML input data, which
is composed only of frequent paths. The third and final stage
is to count frequent subtrees on the pruned data. In this stage
the frequencies of subtrees that are composed only of frequent
paths and that appear as a whole in the real data are counted.
This is done by a low complexity counting algorithm that uses
the table of frequent trees created during the second stage. The
three stages are described in detail in the following subsections.

3.1 Frequencies of paths

Statistics over tags, their attributes and attributes’ values gen-
erate our definition of frequent paths as follows:

	 For each tag on a distinct path (identified uniquely
by the list of tags/nodes from root to the tag be-
ing counted), the count of its appearances is computed
(for example, tag book appears ������� times on path
/library/shelf/book);

	 The total count is calculated, for each attribute of each tag.
For example, the book above could have attributes @date
and @ISBN, the former with count of ������� , and the latter
with count of ���	��� ;

	 The counts for each value of an attribute, are also cal-
culated. For example, @date has the value 1984 forty
times, and the value 1899 only a single time.

For the purpose of the statistics above, text nodes are con-
sidered as attribute nodes, with automatically generated names
(such as @text-node-1).

Here is a sample of typical results of the path frequencies
statistics (the actual result contains a variety of additional statis-
tics, that are omitted here). Note that the number of occu-
rances of the tag “SPN”; of the attribute “text-node-1” within
this tag; and the number of occurances of the specific value
“SEL FROM”, of this attribute are all equal to 239. This partic-
ular (real) example reflects the fact that in an “industrial” XML
database it frequently occurs that in all occurances of a specific
tag there occurs also the same attribute and the same value for
this attribute.

<?xml version="1.0" encoding="UTF-8"?>
<frequencies xmlns:kite="http://www.kite.org.il">

<tag name="SFN" count="239">
...
<path-per-tag name="SFN"

path="/EIPC/FIGURE/PARTLIST_SECTION/PART/NOM_COL/SFN"
count="239">

<attr-per-path name="text-node-1" count="239">
<value-per-attr-per-path value="SEL FROM"

count="239"/>
</attr-per-path>

</path-per-tag>
...

</tag>
...

</frequencies>

3.2 Pruning tags and paths

For our final goal we want to combine the discovery of fre-
quent XML subtrees and of interesting relations among the val-
ues of attributes of those frequent subtrees. To this end, we must
determine in some way which tags and attributes are “interest-
ing”. This is best done by using both the topology of the XML
data and the distribution of values within its tags. In the present
discovery procedure we apply two types of criteria, one looks
at the content of the tag and the other examines the relative
frequency of the tag (i.e. relative to frequencies on its path).
The criterion for the content of tags examines the distribution
of values of attributes and retains values that are more frequent
than some threshold. The criterion for frequency of tags uses a
threshold on the ratio of frequencies of tags along paths. The
criteria are applied in the form of a pruning procedure, by the
algorithm that searches for frequent tags. The algorithm prunes
the frequent tags by using the three following steps:

1. For each tag, the ratio of its count (determined in Sec. 3.1)
to its parent tag count is calculated. If the ratio exceeds

Proceedings of the Third International Conference on Web Information Systems Engineering (Workshops)
0-7695-1754-3/02 $17.00 © 2002 IEEE

DISCOVERING ASSOCIATIONS IN XML DATA 3

a given threshold, the tag is not pruned. Tags that are not
pruned are checked (in the following step) for “interesting”
values to their attributes. Pruned tags are removed together
with the rest of their paths.
Note that frequency ratios of over ������� signal multiplicity
of descendants, on the average. If, on the average, for each
path A-B there is a corresponding path A-B-C, it proba-
bly means that many B on the path A-B have a child C,
and thus C is essential for the frequent subtrees counting
procedure.

2. Attribute values that have a relative frequency (i.e. rel-
ative to their total count) exceeding a given threshold are
considered “interesting”. For example, for a threshold of� � , the value 1984 in the example of Sec. 3.1 would be
considered “interesting”, and the value 1899 in the same
example would not.
Attributes must have at least two “interesting” values in or-
der to be considered “interesting”. This is because if an
attribute has only a single dominant value, it cannot yield
associations (or knowledge). Tags that are not “interest-
ing” are pruned by a recursive procedure that is described
as part of the next step.
The reason for this step is that if an attribute has either
many “insignificant” values or one value only, it will not
generate any meaningful associations. Since we want “in-
teresting” values for each attribute, if there are none, we
prune the tag. The meaning of “insignificant” is defined
by a suitable threshold.

3. Tags that are not “interesting” are pruned only if they do
not posses an “interesting” descendent tag. In other words,
tags remain in the data tree (and thus participate in the
counting of subtrees) only if there is a descendant tag with
“interesting” attribute(s) (or the tag has an interesting at-
tribute itself).

The example in (Fig. 1) demonstrates the results of applying
the pruning principles described above. In the figure of the data
tree, boxed nodes are nodes that have “interesting” attributes
(determined by a threshold on the distribution of their values).

library

book book book journal journal

author ISBN author author date date

Fig. 1. Visualizing determination of “interesting” tags. Boxed nodes are
those that have “interesting” attributes.

Let us assume that the threshold which is used in Step 1
above is � ��� . Following the procedure of determining inter-
esting tags, we find that the path /library/book/ISBN is
below the � ��� threshold (this path occurs only once, while
its ancestor /library/book occurs three times). Next,
/library/journal/date has no “interesting” attributes
(it’s not boxed in the figure), and it also has no descendants,
therefore, this path, is also “non-interesting”. It can be seen that

for the other paths, all the requirements hold, and thus the paths
that remain are:

	 /library
	 /library/book
	 /library/book/author
	 /library/journal
From all the paths that were kept as part of frequent tags,

by the procedure in Sec. 3.1, a tree is constructed. All “non-
interesting” tags and attributes are not included in the tree. In
other words, tags that were not found to be “interesting” by the
recursive procedure of Sec. 3.2 are pruned together with sub-
trees that are rooted at those tags. We term the result, the prun-
ing tree. The pruning tree for the data tree in Sec. 3.2 is shown
in Fig. 2. The algorithm for building the pruning tree is Alg. 1.

library

book journal

author

Fig. 2. Pruning tree resulting from uniting the “interesting paths” from
the data tree in Sec. 3.2.

Algorithm 1 BUILDPRUNINGTREE(PATHLIST)

Pre-condition: PathList is a list of all different paths in the
data tree

Post-condition: � is the pruning tree that adheres to the princi-
ples described in this section

1: /* Next step before the beginning of the recursion */
2: ��� Tree built by uniting the paths in PathList
3: if � count � � parent

count 	 given threshold then
4: /* Erase � from its parent’s list of child subtrees */
5: else
6: for all ��
� child subtrees of � do
7: BUILDPRUNINGTREE(�
)
8: for all ��� attributes of � do
9: if � doesn’t have at least two “interesting” values

then
10: /* Erase � from the list of attributes of � */
11: if � has no child subtrees ��� has no attributes then
12: /* Erase � from parent’s list of child subtrees */

The pruning tree is a combination of frequent paths which
satisfy some requirements. In order to be able to count real sub-
trees, that actually appear in the data we have to use the original
XML tree, which we will call the data tree. The pruning tree
is utilized for the purpose it was built for — pruning nodes in
the data tree. Alg. 2 presents the way to do it: traverse the data
tree simultaneously with the pruning tree, and throw from the
data tree all the tags and their subtrees that do not appear in the
pruning tree. The algorithm needs one pass from top to bottom
on the data tree, to produce the pruned data tree. At the end
of this step, all the nodes of the pruned data tree contain tags
which are “frequent”. This means that some of these nodes have

Proceedings of the Third International Conference on Web Information Systems Engineering (Workshops)
0-7695-1754-3/02 $17.00 © 2002 IEEE

4 DASWIS’02

“interesting” attributes and/or values, or one of their descendant
nodes does.

Algorithm 2 PRUNE-DATA-TREE(DATATREE , PRUN-
INGTREE)

Pre-condition: dataTree is the original data tree,
pruningTree is the constructed from all frequent
paths.

Post-condition: Pruned data tree is returned. In this tree, each
node contains a representation of the subtree rooted at this
node, as well as the representation of the values of nodes on
that subtree. We use such representations so that order of
children in the subtree won’t matter, and for the purpose of
saving space as well.

1: processedTrees ���
2: dataSubTrees � dataTree.children()
3: for all � ���������
	��
������
��� do
4: /* we only consider Element nodes of the XML data

tree, ignoring Comment and Text nodes */
5: if � is an Element node � ��� ����������� �� ������� ��!
�����
�"�$#&%���'(�����(���)� then
6: processedTrees � processedTrees *+

PRUNE-DATA-TREE(� , �
) ,
7: return New subtree with corresponding representation and

values

3.3 Finding frequent subtrees

The counting of subtrees is a complex process that performs
two tasks at the same time - counting of subtrees and storing
of all appearances of the counted subtrees. The different ap-
pearances of the same sub- tree relates to the existence of dif-
ferent values of attributes in the same tags of the two sub-trees.
The counting algorithm keeps two global tables that store sub-
trees in tabular (one row per sub-tree) form. For efficiency,
these tables are hash-tables that store and retrieve similar sub-
trees in -.� � � . In our implementation, these are standard Java
HashMaps, using the standard Java hashCode() for string rep-
resentation. The first table stores every possible subtree in the
pruned data tree. It has one row per each different subtree in
the pruned data-tree. The second table stores all the appear-
ances of the data of each subtree in the pruned data tree. Each
subtree that has a count of / in the data, will have / different
rows in the second table. This will enable the retrieval of the
actual attribute values for algorithms that look for meaningful
associations in the frequent sub-trees.

The counting algorithm traverses the pruned data-tree from
top to bottom, recursively. Each visited node (tag) causes the
algorithm to insert the relevant structure of the sub-tree into the
two tables. For example, if the string 0 A 0 B 120 C 0 D 12121 is inserted
into the first table, this represents the traversal of a sub-tree in
which B and C are children of A, and D is a child of C. The
entry is inserted when the algorithm has traversed this sub-tree
and is pointing at node A for the second time. If the subtree
already exists in the counting table, the counter will be updated.
At this point in the run of the algorithm, the subtree’s attributes
and their values are inserted into the second table. For example,
0 id="123" 0 attribute1="b1",attribute2="b2" 12020 no="5" 12121 .

In the description of Alg. 3, the term SubtreesRegistry
refers to the two global tables described above. One for
counting subtrees and the other for lists of subtrees “value-
tuples”. In the above example, when a subtree is represented
as 0 A 0 B 120 C 0 D 13121 , the representation is unique for all topologi-
cally equivalent subtrees, the order of children is not important.
Assume that in the first table this subtree has the count of � . In
the second table it might have the following list of values:

0 id="123" 0 attribute1="b1",attribute2="b2" 13020 no="5" 12131
0 id="456" 0 attribute1="b1",attribute2="b3" 13020 no="" 12131
0 ... 1

In the first list entry, C has no value or attribute, while B has
two attributes. For completeness, a missing attribute value at
some tag is stored as the value none. Here, the term “missing”
relates to attribute values that appear at some of the appearances
of a frequent sub-tree and are “missing” in others. This will be
useful later, when all attribute values are transferred to some
data mining algorithm for extraction of interesting associations
and empty fields are problematic.

The worst case complexity of this algorithm is -.�4/65&� and this
happens when the data tree becomes one path. The algorithm
scans the data tree bottom-up. When the algorithm starts it picks
up a leaf and updates the SubtreesRegistry tables. Its next step
is to combine the leaf with the immediate subtree it belongs
to. The algorithm updates the SubtreesRegistry accordingly and
repeats this step until it reaches the root of the data tree. The
worst complexity of each step is -.�4/7� , writing the whole data.
The number of steps is the depth of the tree which is / at the
worst case.

Algorithm 3 COUNT-SUBTREES(PRUNEDDATATREE , SUB-
TREESREGISTRY)

Pre-condition: PrunedDataTree is the pruned data tree
(data with eliminated “non-interesting” nodes, and
SubtreesRegistry is structure with two tables as de-
scribed before.

Post-condition: The two tables in SubtreesRegistry, one
with subtrees counts, and another one with subtrees values
list, are updated for all subtrees in PrunedDataTree.

1: 8����
������9������
	(�
��
������� �:8
���
������9��������
���
�"�$#&%���'������(�����
2: for all � �;8
���
������9�������	��
��
������� do
3: COUNT-SUBTREES(� ,SUBTREESREGISTRY)
4: /* rep is this subtree representation, and valueRep is

the corresponding subtree values representation */
5: SubtreesRegistry.addCount(rep, �)
6: SubtreesRegistry.addValue(rep,valueRep)

4 IMPLEMENTATION AND EXPERIMENTATION

To test the proposed algorithms and their implementation
we ran some experiments on XML data. The standard XML
datasets are no good for our approach. Take the famous IMDB
for example, it’s data is composed of a few original large tables
translated into XML format. This means that all subtrees are
similarly frequent. In other words, all subtrees of tags corre-
spond to tuples in an original database table. Correspondingly
they all have the exact same frequency for all sub-tuples, hence

Proceedings of the Third International Conference on Web Information Systems Engineering (Workshops)
0-7695-1754-3/02 $17.00 © 2002 IEEE

DISCOVERING ASSOCIATIONS IN XML DATA 5

no “interesting” subtrees (with widely different frequency of ap-
pearance in the data).

Our experiments were run on a large industrial XML data file
that stores a large manual of an aviation company. This particu-
lar dataset, generated probably mechanically, has little hope for
extraction of meaningful associations, but is at least a true XML
data tree with subtrees widely differing in their frequency of ap-
pearance. The input data includes a total of 382,373 instances
of 62 different tags, in a tree of depth 8. The parameters of the
XML data tree are given in table I.

Depth � � � �
Num. of Tags

� ��� � ������� � � � ����� � � � �	��� � � �
Depth � � �
Num. of Tags

� ��� � ��� �
��� � � � �
TABLE I

DISTRIBUTION OF TAGS IN THE INPUT XML DATA TREE

The result of running Algorithms 3 for 4 different cases of
threshold selections are presented in Table II. For all the cases
in Table II, the similarity threshold for identifying the discov-
ered frequent subtrees is 90% and the required minimal number
of trees is 5. The table presents the number of subtrees, with
different topologies, that were found to be frequent in the data.

case attribute threshold tags threshold different subtrees

1 ���� ���� �
2 ���� ��� ���
3 ����� ���� �
4 ���� ����� �

TABLE II

RESULTS OF RUNNING ALGORITHMS 1, 2, 3

The exact frequency distribution of the resulting subtrees
(that were found to be frequent) is detailed in Table III. Entries
in Table III give the number of instances of frequent subtrees,
with a given number of Tags. Tags are counted in leafs of the
subtree.

case 1 tag 2 tags 3 tags 4 tags

1 �
� � ��� ��� � ��� ������� �����
2 ��� � ��� � � � � � � � � �
3 �	� �
4 �
� � ��� ��� � ��� ������� �����
case 5 tags 8 tags 9 tags 16 tags

1 �
2 � � �
3
4 �

TABLE III

DISTRIBUTION OF FREQUENT SUBTREES

To illustrate the process, let us take a look at a particular sub-
tree that was found to be frequent (Figure 3). The subtree in
Figure 3 has 4 tags/leaf-nodes and 175 instances of this sub-
tree were found in the data. Taking the multiple instances of the

data (i.e. the values of its attributes), one can attempt to dis-
cover meaningful associations. Analyzing the 175 data tuples
of the frequent tree of Figure 3 for association rules and using
a support threshold of

� ��� and a confidence threshold of �����
we get 29 association rules. Examples of association rules are:

 ��

Fig. 3. Example1 description.

1. If PART-->UPA-->SUBUPA=1
Then PART-->NOM_COL-->DOT=.

support 32.39% confidence 95%
2. If PART-->NOM_COL-->DOT=.

Then PART-->NOM_COL-->REFINT(2)=null
support 81.25% confidence 91.67%

3. If PART-->NOM_COL-->REFINT(1)=null
Then PART-->NOM_COL-->DOT=.
& PART-->NOM_COL-->REFINT(2)=null
support 81.25% confidence 94.08%

The analyzed XML data describes presentation modes of text
and graphics of a large manual for some sub systems of an air-
plane. The attribute DOT describes modes of presentation of
parts, whether they are composed of several sub-presentations,
that can be zoomed-in, or not. The value “.” means that the pre-
sentation has no zoom-in capabilities. The first rule means that
when only one subpart is present, then the presentation does not
include capabilities for presenting sub-parts. The second rule
means that when the presentation is “simple”, then no pointer
to a second sub-part exists. The third rule is similar to the first
and second one, but, connects the fact that there is no sub-part
with the “simple” mode of presentation and the non existence
of a second pointer, to a second sub-part.

A much more frequent subtree that was found, has 8126 in-
stances in the data has 3 tags (leaf-nodes) and is presented in
Figure 4. Using a threshold support of

� ��� and confidence
of � ��� we get from the 8126 instances of 3-tuples of data 8
rules. As can be seen, the 2 example rules are very similar to
the previous 3 rules.

 ��

Fig. 4. Example2 description.

1. If PART-->UPA-->SUBUPA=1
Then PART-->NOM_COL-->REFINT=null

support 23.38% confidence 93.09%
2. If PART-->NOM_COL-->DOT=.

Then PART-->NOM_COL-->REFINT=null
support 82.66% confidence 96.25%

Proceedings of the Third International Conference on Web Information Systems Engineering (Workshops)
0-7695-1754-3/02 $17.00 © 2002 IEEE

6 DASWIS’02

5 CONCLUSIONS

The top-down scheme of our frequent trees extraction method
and its resulting value-tuples for mining associations can be
listed as follows:

1. Perform counts of all tags and their paths on the XML file
and create a new XML file that includes the frequencies of
paths and tags. This generates useful meta-data.

2. Prune ”non-interesting” attribute values. Attributes that
are either “rare” or “too-frequent”.

3. Use thresholds on relative frequencies to prune tags/paths.
This will prune subtrees that have low multiplicity (less
frequent instances).

4. Combine frequent paths into subtrees, generating a ”prun-
ing tree” from the data.

5. Prune the data tree, retaining only subtrees that are in the
pruning tree.

6. Count subtrees in the pruned data-tree, using an -.� / 5 �
algorithm.

7. Construct tables of values of the frequent objects (tuples),
thereby enabling procedures of data mining (on the at-
tribute values) to be performed.

The above scheme for extracting and counting frequent sub-
trees in XML data differs from former studies in two aspects:

1. The extraction and counting procedure has low computa-
tional complexity.

2. The selection criteria for “interesting” sub-trees involves
considerations that relate to the statistics of the content of
the data in the XML tags.

For the counting of sub-trees, a viable comparison of the pro-
posed method is with that of WL [10]. WL construct and keep
entire paths and the subtrees that are constructed from the fre-
quent paths. This procedure is clearly exponential in the number
of data nodes. In the proposed method, subtrees are constructed
from the bottom up. Two paths are combined if their leaves are
brothers in the XML tree. As explained in section 3.2, this
computation is linear in the input XML data.

The counting of sub-trees in the proposed method also differs
from that of WL. Here, the number of appearances of combined
paths in the XML tree, is calculated and its frequency deter-
mined. If it is frequent, it is inserted into the table of frequent
trees. This procedure is performed recursively until a maximal
sub tree is achieved. The algorithm of WL removes sub trees
that can in principle be just partial trees to other (frequent) trees
or frequent trees with a different order of some branches [10].

The second major difference of the present extraction method
from former studies, is its consideration of discovery [2]. An
important part of the pruning procedure relates to the content of
the XML tags. Using a threshold on the distribution of values
of attributes, is clearly a non structural criterion. Its rational is
based on our assumption that the finding of frequent sub-trees
is part of a wider goal - discovering forms of knowledge in semi
structured data. Our specific choice is to attempt to discover
association rules (cf. [1], [2]) in the extracted data that was
found to be frequent (i.e. frequent sub-trees). The proposed
method assumes that the values of attributes are the content of
the XML data. This is the reason for pruning paths and potential
sub-trees that have a value distribution of attributes that will not
yield any meaningful associations.

The method proposed in the present paper has been imple-
mented in Java and has an interactive part that enables the user
to select the relevant thresholds. It also outputs the resulting
pruning trees and frequent sub-trees, for the user to inspect and
interact with. The graphical user interface of the implemented
system for extracting frequent tags and constructing the prun-
ing tree is shown in Fig. 5. As can be seen, the frequencies of
attribute values are presented on the screen. The pruning tree
appears on the screen as a combined set of frequent paths that
resulted from the thresholds selected by the user (in the top part
of the form). This pruning tree will be combined with the data,
in order to produce real counts of subtrees in the data, as de-
scribed in Sec. 3.3.

Fig. 5. Graphical User Interface showing a pruning tree.

REFERENCES
[1] Rakesh Agrawal and Tomasz Imielinski and Arun N.Swami, Mining As-

sociation Rules between Sets of Items in Large Databases. Proceedings
of the 1993 ACM SIGMOD International Conference on Management of
Data, pp.207–216, 1993

[2] Rakesh Agrawal and Ramakrishnan Srikant, Fast Algorithms for Mining
Association Rules. Proc. 20th Int. Conf. Very Large Data Bases, VLDB,
pp.487–499, 1994

[3] Tatsuya Asai et. al., Efficient Substructure Discovery from Large Semi-
structured Data, Proc. 2nd SIAM Intern. Conf. on Data Mining (SDM’02),
pp. 158-174, Arlington, VA., April 2002.

[4] Ming-Syan Chen and Jong Soo Park and Philip S. Yu, Efficient Data Min-
ing for Path Traversal Patterns, Knowl. Data Eng., vol 10, pp. 209-221,
1998.

[5] P.A. Laur, F. Masseglia, P. Poncelet and M. Teisseire. A General Architec-
ture for Finding Structural Regularities on the Web (PS), Proc. 9th Intern.
Conf. on Artif. Intell. (AIMSA’2000), Varna, Bulgaria, September 2000.

[6] K. Maruyama and K. Uehara Mining Association Rules from Semi-
Structured Data. ICDCS Workshop on Knowledge Discovery and Data
Mining in the World-Wide Web 2000: F23-F30.

[7] K. Maruyama and K. Uehara Knowledge Integration of Rule Mining
and Schema Discovering, Proc. Third Intern. Conf. on Discovery Science
(DS2000), pp.285-289, 2000.

[8] X. Lin, C. Liu, Y. Zhang, and X. Zhou, Efficiently Computing Frequent
Tree-Like Topology Patterns in a Web Environment , 31st Tool’s Asia,
IEEE cs press, pp. 440-447, 1999.

[9] Ke Wang and Huiqing Liu. Discovering typical structures of documents:
a road map approach . Proc. 21st ACM SIGIR Conf. on Res. Dev. in In-
form. Retrieval (SIGIR’98), pp. 146-154, Melbourne, Austrailia, August
1998.

[10] K. Wang and H. Liu. Discovering Structural Association of Semistruc-
tured Data . IEEE Trans. Knowl. Data Engin., vol. 12, pp. 353-371, 2000.

[11] Wai-ching Wong and Ada Wai-Chee Fu, Finding Structure and Charac-
teristics of Web Documents for Classification . ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, pp. 96-105,
2000.

Proceedings of the Third International Conference on Web Information Systems Engineering (Workshops)
0-7695-1754-3/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

