
Flight of the FINCH
through the Java Wilderness

Michael Orlov and Moshe Sipper
orlovm, sipper@cs.bgu.ac.il

Department of Computer Science
Ben-Gurion University, Israel

GPTP-2010 Workshop
20-22 May 2010, University of Michigan

mailto:orlovm@cs.bgu.ac.il?to=sipper@cs.bgu.ac.il&Subject=FINCH

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

2 / 80

Evolutionary Algorithms

A class of probabilistic optimization algorithms
inspired by the biological process of

Evolution by Natural Selection

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

3 / 80

The Universe. . .

Source: Eiben & Smith, 2003

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

4 / 80

Turing on Evolution

A. M. Turing, “Computing machinery and intelligence,” Mind, 59(236), 433-460, Oct. 1950

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

5 / 80

General Scheme of EAs

Source: Eiben & Smith, 2003

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

6 / 80

Pseudocode of Typical EA

Initialize population with random candidate solutions
Evaluate the fitness each candidate

while termination condition not met do
Select parents
Recombine pairs of parents
Mutate the resulting offspring
Evaluate the new candidates

end while

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

7 / 80

Stochastic Operators

• Fitness value
I computed for each individual

• Selection
I probabilistically selects fittest individuals

• Recombination
I decomposes two distinct solutions
I randomly mixes their parts to form novel solutions

• Mutation
I randomly perturbs a candidate solution

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

8 / 80

Different Types of EAs

• Historically, different flavors of EAs have been associated
with different representations

I Binary strings → Genetic Algorithms
I Real-valued vectors → Evolution Strategies
I Finite-state machines → Evolutionary Programming
I LISP trees → Genetic Programming

• These differences are largely irrelevant, best strategy
I design representation to suit problem
I design variation operators to suit representation

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

9 / 80

Genetic Programming (GP)

• EA, with individuals in population represented as
computer programs

• “Classical” GP uses LISP (S-Expressions)

(+ 1 2 (IF (> TIME 10) 3 4))

1 2

3 4

TIME 10

+

IF

>

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

10 / 80

Genetic Programming (cont’d)

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

11 / 80

Blurb. . .

artificial evolution is highly simplified relative to biology

BUT

repeatedly produces
complex, interesting, and useful solutions

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

12 / 80

EA in Full Bloom

Anecdotal listing of (successful) application areas:
• Acoustics
• Aerospace engineering
• Astronomy and astrophysics
• Chemistry
• Electrical engineering
• Financial markets
• Game playing
• Geophysics
• Materials engineering
• Mathematics and algorithmics
• Military and law enforcement
• Molecular biology
• Pattern recognition and data mining
• Robotics
• Routing and scheduling
• Systems engineering

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

13 / 80

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

14 / 80

GP: Programs or Representations?

“While it is common to describe GP as evolving programs,
GP is not typically used to evolve programs in the familiar
Turing-complete languages humans normally use for software
development.”

“It is instead more common to evolve programs
(or expressions or formulae)

in a more constrained and often domain-specific language.”

A Field Guide to Genetic Programming
[Poli, Langdon, and McPhee, 2008]

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

15 / 80

GP: Programs or Representations?

“While it is common to describe GP as evolving programs,
GP is not typically used to evolve programs in the familiar
Turing-complete languages humans normally use for software
development.”

“It is instead more common to evolve programs
(or expressions or formulae)

in a more constrained and often domain-specific language.”

A Field Guide to Genetic Programming
[Poli, Langdon, and McPhee, 2008]

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

16 / 80

Our Goals

From programs. . .
Evolve actual programs

written in Java

. . . to software!
Improve (existing) software

written in unrestricted Java

Extending prior work
Existing work uses restricted subsets of Java bytecode as
representation language for GP individuals

We evolve unrestricted bytecode

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction
Evolutionary
Computation

Programs?

Goals

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

17 / 80

Our Goals

From programs. . .
Evolve actual programs

written in Java

. . . to software!
Improve (existing) software

written in unrestricted Java

Extending prior work
Existing work uses restricted subsets of Java bytecode as
representation language for GP individuals

We evolve unrestricted bytecode

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

18 / 80

Let’s Evolve Java Source Code

• Rely on the building blocks in the initial population
• Defining genetic operators is problematic
• How do we define good source-code crossover?

Factorial (recursive)
class F {

int fact(int n) {
int ans = 1;

if (n > 0)
ans = n *

fact(n-1);

return ans;
}

}

⇐

Factorial (iterative)
class F {

int fact(int n) {
int ans = 1;

for (; n > 0; n--)
ans = ans * n;

return ans;
}

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

19 / 80

Oops

• Source-level crossover typically produces garbage

Factorial (recursive ←−× iterative)
class F {

int fact(int n) {
int ans = 1;

if (n > = 1;
for (; n > 0; n--)

ans = ans * n; n-1);

return ans;
}

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

20 / 80

Oops

• Source-level crossover typically produces garbage

Factorial (recursive ←−× iterative)
class F {

int fact(int n) {
int ans = 1;

if (n > = 1;
for (; n > 0; n--)

ans = ans * n; n-1);

return ans;
}

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

21 / 80

Parse Trees

• Maybe we can design better genetic operators?

• Maybe. . . but too much harsh syntax
Possibly use parse tree?

Just one BNF rule (of many)
method_declaration ::=⇒

modifier∗ type identifier
“(” parameter_list? “)” “[]”∗

〈 statement_block | “;” 〉

method_declaration

modifier
type identifier (parameter_list)

[]
statement_block

;

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

22 / 80

Parse Trees

• Maybe we can design better genetic operators?
• Maybe. . . but too much harsh syntax
Possibly use parse tree?

Just one BNF rule (of many)
method_declaration ::=⇒

modifier∗ type identifier
“(” parameter_list? “)” “[]”∗

〈 statement_block | “;” 〉

method_declaration

modifier
type identifier (parameter_list)

[]
statement_block

;

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

23 / 80

Parse Trees

• Maybe we can design better genetic operators?
• Maybe. . . but too much harsh syntax
Possibly use parse tree?

Just one BNF rule (of many)
method_declaration ::=⇒

modifier∗ type identifier
“(” parameter_list? “)” “[]”∗

〈 statement_block | “;” 〉

method_declaration

modifier
type identifier (parameter_list)

[]
statement_block

;

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

24 / 80

Bytecode

Better than parse trees:
Let’s use bytecode!

Java Virtual Machine (JVM)
• Source code is compiled to platform-neutral bytecode
• Bytecode is executed with fast just-in-time compiler
• High-order, simple yet powerful architecture
• Stack-based, supports hierarchical object types
• Not limited to Java!

(Scala, Groovy, Jython, Kawa, Clojure, . . .)

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

25 / 80

Bytecode (cont’d)
Some basic bytecode instructions

Stack ↔ Local variables
iconst 1 pushes int 1 onto operand stack
aload 5 pushes object in local variable 5 onto stack

(object type is deduced when class is loaded)
dstore 6 pops two-word double to local variables 6–7

Arithmetic instructions (affect operand stack)
imul pops two ints from stack, pushes multiplication result

Control flow (uses operand stack)
ifle +13 pops int, jumps +13 bytes if value 6 0
lreturn pops two-word long, returns to caller’s stack

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

26 / 80

Bytecode (cont’d)
Some basic bytecode instructions

Stack ↔ Local variables
iconst 1 pushes int 1 onto operand stack
aload 5 pushes object in local variable 5 onto stack

(object type is deduced when class is loaded)
dstore 6 pops two-word double to local variables 6–7

Arithmetic instructions (affect operand stack)
imul pops two ints from stack, pushes multiplication result

Control flow (uses operand stack)
ifle +13 pops int, jumps +13 bytes if value 6 0
lreturn pops two-word long, returns to caller’s stack

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

27 / 80

Bytecode (cont’d)
Some basic bytecode instructions

Stack ↔ Local variables
iconst 1 pushes int 1 onto operand stack
aload 5 pushes object in local variable 5 onto stack

(object type is deduced when class is loaded)
dstore 6 pops two-word double to local variables 6–7

Arithmetic instructions (affect operand stack)
imul pops two ints from stack, pushes multiplication result

Control flow (uses operand stack)
ifle +13 pops int, jumps +13 bytes if value 6 0
lreturn pops two-word long, returns to caller’s stack

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

28 / 80

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code

• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

29 / 80

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code
• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

30 / 80

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code
• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate

• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

31 / 80

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code
• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring

• Conclusion: Avoid bad crossover and mutation

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

32 / 80

Bytecode (cont’d)
Evolutionary operators

• Java bytecode is less fragile than source code
• But, bytecode must be correct in order to run correctly

Correct bytecode requirements
Stack use is type-consistent

(e.g., can’t multiply an int by an Object)
Local variables use is type-consistent

(e.g., can’t read an int after storing an Object)
No stack underflow
No reading from uninitialized variables

• So, genetic operators are still delicate
• Need good genetic operators to produce correct offspring
• Conclusion: Avoid bad crossover and mutation

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

33 / 80

Evolutionary Operators

Unidirectional bytecode crossover:

Bytecode A
. . .
. . .
. . .
Section α
. . .
. . .
. . .

Bytecode B
. . .
. . .
. . .
Section β
. . .
. . .
. . .

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

34 / 80

Evolutionary Operators

Unidirectional bytecode crossover:

Bytecode A
. . .
. . .
. . .
Section α
. . .
. . .
. . .

Bytecode B
. . .
. . .
. . .
Section β
. . .
. . .
. . .

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

35 / 80

Evolutionary Operators
Good and bad crossovers

Parent A:

Factorial (recursive)
class F
{

int fact(int n)
{

int ans = 1;

if (n > 0)
ans = n * fact(n-1);

return ans;
}

}

Compiled bytecode
0 iconst_1
1 istore_2
2 iload_1
3 ifle 16
6 iload_1
7 aload_0
8 iload_1
9 iconst_1

10 isub
11 invokevirtual #2
14 imul
15 istore_2
16 iload_2
17 ireturn

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

36 / 80

Evolutionary Operators
Good and bad crossovers

Parent B:

Factorial (iterative)
class F
{

int fact(int n)
{

int ans = 1;

for (; n > 0; n--)
ans = ans * n;

return ans;
}

}

Compiled bytecode
0 iconst_1
1 istore_2
2 iload_1
3 ifle 16
6 iload_2
7 iload_1
8 imul
9 istore_2

10 iinc 1, -1
13 goto 2
16 iload_2
17 ireturn

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

37 / 80

Evolutionary Operators
Good and bad crossovers

Replace a section in A with section from B

Bytecode A
0 iconst_1
1 istore_2
2 iload_1
3 ifle 16
6 iload_1
7 aload_0
8 iload_1
9 iconst_1

10 isub
11 invokevirtual #2
14 imul
15 istore_2
16 iload_2
17 ireturn

⇐

Bytecode B
0 iconst_1
1 istore_2
2 iload_1
3 ifle 16
6 iload_2
7 iload_1
8 imul
9 istore_2

10 iinc 1, -1
13 goto 2
16 iload_2
17 ireturn

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

38 / 80

Evolutionary Operators
Good crossover example

Stack use is depth- and type-consistent, variables are initialized.

Bytecode A
0 iconst_1
1 istore_2
2 iload_1
3 ifle 16
6 iload_1
7 aload_0
8 iload_1
9 iconst_1

10 isub
11 invokevirtual #2
14 imul
15 istore_2
16 iload_2
17 ireturn

⇐

Bytecode B
0 iconst_1
1 istore_2
2 iload_1
3 ifle 16
6 iload_2
7 iload_1
8 imul
9 istore_2

10 iinc 1, -1
13 goto 2
16 iload_2
17 ireturn

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

39 / 80

Evolutionary Operators
Good crossover example

Stack use is depth- and type-consistent, variables are initialized.

Bytecode (A ←−× B)
0 iconst_1
1 istore_2
2 iload_1
3 ifle 12
6 iload_1
7 iload_2
8 iload_1
9 imul

10 imul
11 istore_2
12 iload_2
13 ireturn

Decompiled source
class F
{

int fact(int n)
{

int ans = 1;

if (n > 0)
ans = n * (ans * n);

return ans;
}

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

40 / 80

Evolutionary Operators
Bad crossover example

Stack use is depth- and type-inconsistent.

Bytecode A
0 iconst_1
1 istore_2
2 iload_1
3 ifle 16
6 iload_1
7 aload_0
8 iload_1
9 iconst_1

10 isub
11 invokevirtual #2
14 imul
15 istore_2
16 iload_2
17 ireturn

⇐

Bytecode B
0 iconst_1
1 istore_2
2 iload_1
3 ifle 16
6 iload_2
7 iload_1
8 imul
9 istore_2

10 iinc 1, -1
13 goto 2
16 iload_2
17 ireturn

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution
Source code

Parse trees

Bytecode

Operators

Crossover

Experiments

In the Wild

Conclusions

References

41 / 80

Evolutionary Operators
Bad crossover example

Stack use is depth- and type-inconsistent.

Bytecode (A ←−× B)
0 iconst_1
1 istore_2
2 iload_1
3 ifle 13
6 iload_2
7 iload_1
8 invokevirtual #2

11 imul
12 istore_2
13 iload_2
14 ireturn

“Decompiled” source
class F {

int fact(int n)
{

int ans = 1;

if (n > 0)
ans = ans .fact(n) * ? ;

return ans;
}

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

42 / 80

Compatible Crossover
Constraints of unidirectional crossover A←−×B

Good crossover is achieved by respecting bytecode constraints:
(α is target section in A, β is source section in B)

Operand stack

e.g., β doesn’t pop values with types incompatible to those
popped by α

Local variables
e.g., variables read by β in B must be written before α in A
with compatible types

Control flow
e.g., branch instructions in β have no “outside” destinations

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

43 / 80

Compatible Crossover
Constraints of unidirectional crossover A←−×B

Good crossover is achieved by respecting bytecode constraints:
(α is target section in A, β is source section in B)

Operand stack

e.g., β doesn’t pop values with types incompatible to those
popped by α

Local variables
e.g., variables read by β in B must be written before α in A
with compatible types

Control flow
e.g., branch instructions in β have no “outside” destinations

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

44 / 80

Compatible Crossover
Constraints of unidirectional crossover A←−×B

Good crossover is achieved by respecting bytecode constraints:
(α is target section in A, β is source section in B)

Operand stack

e.g., β doesn’t pop values with types incompatible to those
popped by α

Local variables
e.g., variables read by β in B must be written before α in A
with compatible types

Control flow
e.g., branch instructions in β have no “outside” destinations

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

45 / 80

Formal Definition
(Example of operand stack requirement)

α and β have compatible stack frames up to stack depth of β:
pops of α have identical or narrower types as pops of β;
pushes of β have identical or narrower types as pushes of α

Good crossover
α β

pre-stack **AB **AA
post-stack **B **C
depth 3 2

Stack pops “AB”
(2 stop tack frames) are
narrower than “AA”,
whereas stack push “C” is
narrower than “B”

Types hierarchy: C → B → A

(see [Orlov and Sipper, 2009, 2010] for full formal definitions)

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover
Compatible XO

Formal Definition

Experiments

In the Wild

Conclusions

References

46 / 80

Formal Definition
(Example of operand stack requirement)

α and β have compatible stack frames up to stack depth of β:
pops of α have identical or narrower types as pops of β;
pushes of β have identical or narrower types as pushes of α

Bad crossover
α β

pre-stack **AB **Af
post-stack **B **A
depth 3 2

Stack pops “AB” are not
narrower than “Af”
(B and f are incompatible);
stack push “A” is not
narrower than “B”

Types hierarchy: B → A; f is a float

(see [Orlov and Sipper, 2009, 2010] for full formal definitions)

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

47 / 80

Symbolic Regression
As an evolutionary example. . .

Parameters
• Objective: symbolic regression, x4 + x3 + x2 + x
• Fitness: sum of errors on 20 random data points in [−1, 1]
• Input: Number num (a Java type)

Seeding
• Population initialized using seeding

[Langdon and Nordin, 2000]
• Seed population with clones of Koza’s original
worst-of-generation-0

[Koza, 1992]

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

48 / 80

Symbolic Regression
As an evolutionary example. . .

Parameters
• Objective: symbolic regression, x4 + x3 + x2 + x
• Fitness: sum of errors on 20 random data points in [−1, 1]
• Input: Number num (a Java type)

Seeding
• Population initialized using seeding

[Langdon and Nordin, 2000]
• Seed population with clones of Koza’s original
worst-of-generation-0

[Koza, 1992]

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

49 / 80

Symbolic Regression
Seeding with Koza’s worst-of-generation-0

Original Lisp individual and its tree representation:

(EXP (- (% X (- X (SIN X))) (RLOG (RLOG (* X
X)))))

X

X

X X X

EXP

-

% RLOG

-

SIN

RLOG

*

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

50 / 80

Symbolic Regression
Seeding with Koza’s worst-of-generation-0

Translation to unrestricted Java

class SimpleSymbolicRegression {
Number simpleRegression(Number num) {

double x = num.doubleValue();
double llsq = Math.log(Math.log(x*x));
double dv = x / (x - Math.sin(x));
double worst = Math.exp(dv - llsq);
return Double.valueOf(worst + Math.cos(1));

}

/* Rest of class omitted */
}

We added a couple of building blocks in the last line

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

51 / 80

Symbolic Regression
Setup and Statistics

Setup (similar to Koza’s)
• Population: 500 individuals
• Generations: 51 (or less)
• Probabilities: pcross = 0.9

(α and β segments are uniform over segment sizes)
• Selection: binary tournament

Statistics
• Yield: 99% of runs successful (out of 100)
• Runtime: 30–60 s on dual-core 2.6GHz Opteron
• Memory limits: insignificant w.r.t. runtime

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

52 / 80

Symbolic Regression
Setup and Statistics

Setup (similar to Koza’s)
• Population: 500 individuals
• Generations: 51 (or less)
• Probabilities: pcross = 0.9

(α and β segments are uniform over segment sizes)
• Selection: binary tournament

Statistics
• Yield: 99% of runs successful (out of 100)
• Runtime: 30–60 s on dual-core 2.6GHz Opteron
• Memory limits: insignificant w.r.t. runtime

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

53 / 80

Symbolic Regression
Evolved perfect individuals

A perfect solution easily evolves:
(beware of decompiler quirks!)

class SimpleSymbolicRegression_0_7199 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = num.doubleValue();
double d1 = d; d = Double.valueOf(d + d * d *

num.doubleValue()).doubleValue();
return Double.valueOf(d +

(d = num.doubleValue()) * num.doubleValue());
}

/* Rest of class unchanged */
}

Computes (x + x · x · x) + (x + x · x · x) · x = x(1+ x)(1+ x2)

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments
Symbolic Regression

Seeding

Statistics

Results

In the Wild

Conclusions

References

54 / 80

Symbolic Regression
Evolved perfect individuals

Another solution:

class SimpleSymbolicRegression_0_2720 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = d; d = d;
double d1 = Math.exp(d - d);
return Double.valueOf(num.doubleValue() *

(num.doubleValue() * (d * d + d) + d) + d);
}

/* Rest of class unchanged */
}

Computes x · (x · (x · x + x) + x) + x = x(1+ x(1+ x(1+ x)))

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

55 / 80

Java Wilderness
Complex Regression

Parameters
• Objective: symbolic regression: x9 + x8 + · · ·+ x2 + x
• Fitness: incremental evaluation,

∑n
i=1 x i , up to n = 9

• Crossover: Gaussian distribution over segment sizes
• Parsimony pressure, growth limit

Initialization
• Worst of generation-0 from simple regression

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

56 / 80

Java Wilderness
Complex Regression

A perfect solution:

Number simpleRegression(Number num) {
double d = num.doubleValue();
return Double.valueOf(d + (d * (d * (d +

((d = num.doubleValue()) +
(((num.doubleValue() * (d = d) + d) *

d + d) * d + d) * d)
* d) + d) + d) * d);

}

Computes
x +(x · (x · (x +(x +(((x · x + x) · x + x) · x + x) · x) · x)+ x)+ x) · x

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

57 / 80

Java Wilderness
Artificial Ant

Parameters
• Objective: consume all food pellets on Santa Fe trail
• Fitness: number of food pellets consumed
• Crossover: Gaussian distribution over segment sizes
• Parsimony pressure, growth limit

Initialization
• “Avoider” (zero-fitness)

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

58 / 80

Java Wilderness
Artificial Ant

Santa Fe Trail:

(a) Initial setup (b) Avoider

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

59 / 80

Java Wilderness
Artificial Ant

A perfect solution:

void step() {
if (foodAhead()) {

move(); right();
}
else {

right(); right();
if (foodAhead())

left();
else {

right(); move();
left();

}
left(); left();

}
}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

60 / 80

Java Wilderness
Intertwined Spirals

Parameters
• Objective: two-class classification of intertwined spirals
• Fitness: number of correctly classified points

Initialization
• Arbitrarily organized repository of building blocks:
floating-point arithmetics, trigonometric functions, and
polar-rectangular coordinates conversion

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

61 / 80

Java Wilderness
Intertwined Spirals

Intertwined spirals:

−1

1
y

−1 1
x

(e) Initial setup (f) Koza’s evolved solution

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

62 / 80

Java Wilderness
Intertwined Spirals

A perfect solution:

Computes the (approximate) sign of
sin
(9
4π

2√x2 + y2 − tan−1 y
x
)
as the class predictor of (x , y)

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

63 / 80

Java Wilderness
Intertwined Spirals

Koza’s best-of-run:

(sin (iflte (iflte (+ Y Y) (+ X Y) (- X Y) (+ Y Y)) (* X X)
(sin (iflte (% Y Y) (% (sin (sin (% Y 0.30400002))) X) (% Y
0.30400002) (iflte (iflte (% (sin (% (% Y (+ X Y))
0.30400002)) (+ X Y)) (% X -0.10399997) (- X Y) (* (+
-0.12499994 -0.15999997) (- X Y))) 0.30400002 (sin (sin
(iflte (% (sin (% (% Y 0.30400002) 0.30400002)) (+ X Y))
(% (sin Y) Y) (sin (sin (sin (% (sin X) (+ -0.12499994
-0.15999997))))) (% (+ (+ X Y) (+ Y Y)) 0.30400002))))
(+ (+ X Y) (+ Y Y))))) (sin (iflte (iflte Y (+ X Y) (- X Y)
(+ Y Y)) (* X X) (sin (iflte (% Y Y) (% (sin (sin (% Y
0.30400002))) X) (% Y 0.30400002) (sin (sin (iflte (iflte
(sin (% (sin X) (+ -0.12499994 -0.15999997))) (% X
-0.10399997) (- X Y) (+ X Y)) (sin (% (sin X) (+
-0.12499994 -0.15999997))) (sin (sin (% (sin X) (+
-0.12499994 -0.15999997)))) (+ (+ X Y) (+ Y Y))))))) (%
Y 0.30400002)))))

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

64 / 80

Java Wilderness
Intertwined Spirals

Our best-of-run:

boolean isFirst(double x, double y) {
double a, b, c, e;
a = Math.hypot(x, y); e = y;
c = Math.atan2(y, b = x) +

-(b = Math.atan2(a, -a))
* (c = a + a) * (b + (c = b));

e = -b * Math.sin(c);
if (e < -0.0056126487018762772) {

b = Math.atan2(a, -a);
b = Math.atan2(a * c + b, x); b = x;
return false;

}
else
return true;

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

65 / 80

Java Wilderness
Array Sum

Parameters
• Objective: summation of numbers in an input array
• Fitness: differences from actual sums on test inputs
• Time limit: 5000 backward branches

Code instrumentation
• Bytecode is instrumented with calls to time-limit check
• Before each backward branch and method invocation
• Robust and portable technique

Initialization
• “Weird” program that does not compute the sum

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

66 / 80

Java Wilderness
Array Sum

Array sum: array loop solution

public int sumlist(int list[]) {
int sum = 0;
int size = list.length;
for (int tmp = 0; tmp < list.length; tmp++) {

size = tmp;
sum = sum - (0 - list[tmp]);

}
return sum;

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

67 / 80

Java Wilderness
Array Sum

Array sum: List loop solution

int sumlist(List list) {
int sum = 0;
int size = list.size();
for (Iterator iterator = list.iterator();

iterator.hasNext();) {
int tmp = ((Integer) iterator.next())

.intValue();
tmp = tmp + sum;
if (tmp == list.size() + sum)

sum = tmp;
sum = tmp;

}
return sum;

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

68 / 80

Java Wilderness
Array Sum

Array sum: List-recursive solution

int sumlistrec(List list) {
int sum = 0;
if (list.isEmpty())

sum = sum;
else

sum += ((Integer)list.get(0)).intValue() +
sumlistrec(list.subList(1, list.size()));

return sum;

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

69 / 80

Java Wilderness
The Tale of Alta Del

Parameters
• Objective: learn to play Tic-Tac-Toe
• Fitness: rounds won in single-elimination tournament

Initialization
• Negamax algorithm with α-β pruning and
one of four (plausibly) insidious imperfections

Performance
• All imperfections are easily swept away
(with interesting quirks!)

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild
Complex Regression

Artificial Ant

Spirals

Array Sum

Tic-Tac-Toe

Conclusions

References

70 / 80

Java Wilderness
The Tale of Alta Del

The Tic-Tac-Toe seed:
1 int negamaxAB(TicTacToeBoard board,
2 int alpha, int beta, boolean save) {
3 Position[] free = getFreeCells(board);
4 // utility is derived from the number of free cells left
5 if (board.getWinner() != null)
6 alpha = utility(board, free);
7 else if (free.length == 0)
8 alpha = 0 save = false ;

9 else for (Position move: free) {
10 TicTacToeBoard copy = board.clone();
11 copy.play(move.row(), move.col(),
12 copy.getTurn());

13 int utility = - (removed) negamaxAB(copy,

14 -beta, -alpha, false save);
15 if (utility > alpha) {
16 alpha = utility;
17 if (save)
18 // save the move into a class instance field
19 chosenMove = move;
20 if (alpha >= beta beta >= alpha)

21 break;
22 }
23 }
24 return alpha;
25 }

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

71 / 80

Conclusions

Completely unrestricted Java programs can be evolved
(via bytecode)

Loops and recursion are not a problem!

Extant (bad) Java programs can be improved

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

72 / 80

Future Work

• Actively searching for consistent bytecode segments
during compatibility checks

• Class-level evolution: cross-method crossover,
introduction of new methods

• Development of mutation operators
• Applying FINCH to additional hard problems
• Designing an IDE plugin to leverage FINCH
for software engineers

• Applying FINCH to meta-evolution
• Automatic improvement of existing applications:
the realm of extant software

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

73 / 80

“I believe that in about fifty years’ time it will be possible, to
programme computers [. . .] to make them play the imitation
game so well that an average interrogator will not have more
than 70 per cent. chance of making the right identification
after five minutes of questioning.”

A. M. Turing, “Computing machinery and intelligence,” Mind, 59(236), 433-460, Oct. 1950

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

74 / 80

“. . . despite its current widespread use, there was, within living
memory, equal skepticism about whether compiled code could
be trusted. If a similar change of attitude to evolved code
occurs over time . . . ”

M. Harman, “Automated patching techniques: The fix is in,” Communications of the ACM, 53(5), May 2010

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

75 / 80

We believe that in about fifty years’ time it will be possible, to
program computers. . . by means of evolution.

Not merely possible but indeed prevalent.

Turing was wrong—will we be?

To find out, please register for GPTP 2060.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

76 / 80

We believe that in about fifty years’ time it will be possible, to
program computers. . . by means of evolution.

Not merely possible but indeed prevalent.

Turing was wrong—will we be?

To find out, please register for GPTP 2060.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

77 / 80

We believe that in about fifty years’ time it will be possible, to
program computers. . . by means of evolution.

Not merely possible but indeed prevalent.

Turing was wrong—will we be?

To find out, please register for GPTP 2060.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions
Conclusions

Future Work

References

78 / 80

We believe that in about fifty years’ time it will be possible, to
program computers. . . by means of evolution.

Not merely possible but indeed prevalent.

Turing was wrong—will we be?

To find out, please register for GPTP 2060.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

Introduction

Evolution

Crossover

Experiments

In the Wild

Conclusions

References

79 / 80

References

M. Orlov and M. Sipper. Genetic programming in the wild: Evolving unrestricted
bytecode. In G. Raidl et al., editors, Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation, July 8–12, 2009,
Montréal Québec, Canada, pages 1043–1050, New York, NY, USA, July
2009. ACM Press. ISBN 978-1-60558-325-9. doi:10.1145/1569901.1570042.

M. Orlov and M. Sipper. Flight of the FINCH through the Java wilderness. IEEE
Transactions on Evolutionary Computation, 2010. Conditionally accepted.

http://dx.doi.org/10.1145/1569901.1570042

	Introduction
	Evolutionary Computation
	Programs?
	Goals

	Evolution
	Source code
	Parse trees
	Bytecode
	Operators

	Crossover
	Compatible XO
	Formal Definition

	Experiments
	Symbolic Regression
	Seeding
	Statistics
	Results

	In the Wild
	Complex Regression
	Artificial Ant
	Spirals
	Array Sum
	Tic-Tac-Toe

	Conclusions
	Conclusions
	Future Work

	References

