TOWARDS MODULAR
LARGE-SCALE
DARWINIAN SOFTWARE
IMPROVEMENT

EEEEEEEEEEEEEEEEEEEEEEEEEEE
IIIII

2 THE HOLY GRAIL

* Automatically improve large-scale software systems
* Which constantly increase in size
* Which increase in complexity

* Which are hard to evaluate X times per second

* Practical pathway to making evolution of such systems more practical and efficient:
* Characterize large-scale systems

* Propose modular evolution methodology (has costs and benefits)

* Propose practical integration into programming languages and |IDEs

3 WHAT ARE LARGE-SCALE SOFTWARE SYSTEMS!?

Very large amount of code

Long startup and shutdown times

Complex, hard to formalize logic

Dependency on external systems with state (e.g., databases)

WHY IS EVOLVING LARGE-SCALE SW HARD!?

Current approaches require huge computational resources in order to scale:

Large amount of code results in large search space

* Not a problem per se, but drastically increases evaluation time

Long startup and shutdown result in long evaluation time

Complex logic makes system constraints hard to formalize

* Evolution is expected to introduce bugs that are hard to detect

External systems with state are difficult to control

* Can we really replicate a database for each evaluation?

* Unlike in e.g. testing, we cannot expect to create a limited mockup

5 MOTIVATING EXAMPLE

* Industrial software-based factory control system

* Impossible to start up and shutdown the control system for each evaluation

* Too inefficient
* Too insecure, probably against regulatory requirements

* Likely requires shutdown of most factory processes and not just the control system

* An engineer could designate a specific module to be automatically improved

* Example: a controller for a system of valves tasked with maximizing the throughput of a fluid

through a set of pipes

6 VALVES CONTROLLER IMPROVEMENT

* Important to remember: still a module within a large-scale software system

* Engineer needs to implement:

Quick setup and release of valves access during initialization and shutdown

Logging of current component specifications and outcomes

Fitness evaluation of current component performance during and after its operation

Restrictions on allowed operations by the component, preventing it from causing physical damage to the system

Security restrictions on the component to comply with regulatory requirements on unverified code — e.g.,a
sandboxed execution

Code size, memory and other resource-related strict and soft restrictions stemming from system limits

* Is such modular software improvement approach viable from managerial point-of-view?

7 SUGGESTED PATHWAY TO THE HOLY GRAIL

Software designer should be central to the evolutionary process

Unrelated code is excluded from the evolutionary process

System startup and shutdown are excluded from the evolutionary process

Focus is on evolvable modules

* As defined and controlled by software designer

8 FORMALIZING MODULAR LARGE-SCALE

SOFTWARE IMPROVEMENT

Evolvable Setup / Teardown API
Modules Evolution Support API

~

jm—
\—

[(Ultra-)Large-Scale Software System]

-

_

~

Evolutionary

Engine

J

SUGGESTED PRACTICAL IMPLEMENTATION

Model on existing successful frameworks (e.g., JUnit)

Annotate existing code and add new annotated code

* @EvolvableModule, @Setup, @Teardown, @Evaluate

Evolutionary engine is a library

* Used by the large-scale system, not the other way around

Improvability can be considered as a system-level feature

* Should be implemented at system level, like testability, verifiability, etc.

10 WHAT MODULAR SOFTWARE IMPROVEMENT IS
AND IS NOT

Requires stronger software engineer’s integration

Provides faster and more focused software improvement

Not a way to improve software completely automatically

Not intended for bug fixing or similar specialized tasks

* These tasks already have their own strict search space environments

