
TOWARDS MODULAR 
LARGE-SCALE 
DARWINIAN SOFTWARE 
IMPROVEMENT

MICHAEL ORLOV

SHAMOON COLLEGE OF ENGINEERING

ISRAEL

GECCO GI 2018, KYOTO, JAPAN 2018年7月16日



THE HOLY GRAIL

• Automatically improve large-scale software systems

• Which constantly increase in size

• Which increase in complexity

• Which are hard to evaluate X times per second

• Practical pathway to making evolution of such systems more practical and efficient:

• Characterize large-scale systems

• Propose modular evolution methodology (has costs and benefits)

• Propose practical integration into programming languages and IDEs

2



WHAT ARE LARGE-SCALE SOFTWARE SYSTEMS?

• Very large amount of code

• Long startup and shutdown times

• Complex, hard to formalize logic

• Dependency on external systems with state (e.g., databases)

3



WHY IS EVOLVING LARGE-SCALE SW HARD?

• Current approaches require huge computational resources in order to scale:

• Large amount of code results in large search space

• Not a problem per se, but drastically increases evaluation time

• Long startup and shutdown result in long evaluation time

• Complex logic makes system constraints hard to formalize

• Evolution is expected to introduce bugs that are hard to detect

• External systems with state are difficult to control

• Can we really replicate a database for each evaluation?

• Unlike in e.g. testing, we cannot expect to create a limited mockup

4



MOTIVATING EXAMPLE

• Industrial software-based factory control system

• Impossible to start up and shutdown the control system for each evaluation

• Too inefficient

• Too insecure, probably against regulatory requirements

• Likely requires shutdown of most factory processes and not just the control system

• An engineer could designate a specific module to be automatically improved

• Example: a controller for a system of valves tasked with maximizing the throughput of a fluid 

through a set of pipes

5



VALVES CONTROLLER IMPROVEMENT

• Important to remember: still a module within a large-scale software system

• Engineer needs to implement:

• Quick setup and release of valves access during initialization and shutdown

• Logging of current component specifications and outcomes

• Fitness evaluation of current component performance during and after its operation

• Restrictions on allowed operations by the component, preventing it from causing physical damage to the system

• Security restrictions on the component to comply with regulatory requirements on unverified code — e.g., a 

sandboxed execution

• Code size, memory and other resource-related strict and soft restrictions stemming from system limits

• Is such modular software improvement approach viable from managerial point-of-view?

6



SUGGESTED PATHWAY TO THE HOLY GRAIL

• Software designer should be central to the evolutionary process

• Unrelated code is excluded from the evolutionary process

• System startup and shutdown are excluded from the evolutionary process

• Focus is on evolvable modules

• As defined and controlled by software designer

7



FORMALIZING MODULAR LARGE-SCALE 
SOFTWARE IMPROVEMENT

(Ultra-)Large-Scale Software System

Evolvable 
Modules

Setup / Teardown API
Evolution Support API

Evolutionary 
Engine

8



SUGGESTED PRACTICAL IMPLEMENTATION

• Model on existing successful frameworks (e.g., JUnit)

• Annotate existing code and add new annotated code

• @EvolvableModule, @Setup, @Teardown, @Evaluate

• Evolutionary engine is a library

• Used by the large-scale system, not the other way around

• Improvability can be considered as a system-level feature

• Should be implemented at system level, like testability, verifiability, etc.

9



WHAT MODULAR SOFTWARE IMPROVEMENT IS 
AND IS NOT

• Requires stronger software engineer’s integration

• Provides faster and more focused software improvement

• Not a way to improve software completely automatically

• Not intended for bug fixing or similar specialized tasks

• These tasks already have their own strict search space environments

10


