
Darwinian Software Engineering

esis submitted in partial fulfillment
of the requirements for the degree of

D  P

by

Michael Orlov

Submitted to the Senate of

September 

Beer-Sheva · I

Darwinian Software Engineering

esis submitted in partial fulfillment
of the requirements for the degree of

D  P

by

Michael Orlov

Submitted to the Senate of

Approved by the advisor

Approved by the Dean of
the Kreitman School for
Advanced Graduate Studies

September 

Beer-Sheva · I

D S E

is work was carried out under the
supervision of Prof. Moshe Sipper
In the Department of Computer Science
In the Faculty of Natural Sciences

iv

Declaration

R S’ A 
S  D T  R:

I, Michael Orlov, whose signature appears below, hereby declare that:

• I havewritten thisesis bymyself, except for the help and guidance offered
by my esis Advisors.

• e scientific materials included in this esis are products of my own re-
search, culled from the period during which I was a research student.

Student’s name: Michael Orlov
Date: ..
Signature:

v

vi

Acknowledgments

W  thesis would not have been possible without the extraordinary
support that I received from my advisors, colleagues, and collaborators.

First and foremost I would like to thank Prof. Moshe Sipper for his steadfast
expert guidance during the years of research and development presented here,
and his unconditional overall support for my Ph.D. studies.

I am grateful to Prof. Natalio Krasnogor and to Dr. Mayer Goldberg for pro-
viding valuable input at the research proposal stage of this work. I was fortunate
to meet with Prof. Krasnogor several times later in the course of my studies, and
he always had helpful and insightful advice for the research process.

I am very thankful to Dr. Matthew Hyde for inviting me to collaborate on ex-
tending FINCH at University of Nottingham and aerwards at Ben-Gurion Uni-
versity, which has been a wonderful experience.

My sincere gratitude goes to Mr. Marcel Adams and the Israeli Academy of
Sciences for generously supporting my studies and conference travel with Adams
Fellowship, and for providing the amazing support network ofAdams conferences
and meetings. I am also grateful to Dr. Yossi Friedman and the Department of
Computer Science at Ben-GurionUniversity for the Friedman Scholarship award.

Finally, I would like to praise my wonderful wife Marina — without her un-
reserved support, receiving a Ph.D. degree would have been beyond the realm of
possibility.

vii

viii

Contents

Declaration v

Acknowledgments vii

Abstract 

 Introduction 

 Related Work 

 Bytecode Evolution 
. Why Target Bytecode for Evolution? 
. e Grammar Alternative . 
. e Halting Issue . 
. (No) Loss of Compiler Optimization 
. Bytecode Evolution Principles 
. Compatible Bytecode Crossover 

 Experimental Validation 
. Symbolic Regression: Simple and Complex 
. Artificial Ant . 
. Intertwined Spirals . 
. Array Sum . 
. Tic-Tac-Toe . 

 Conclusions 

A Source Listings 
A. Artificial Ant: Avoider . 

Bibliography 

Index 

ix

C

Glossary 

Hebrew Abstract (תקציר) H:
A Hebrew translation of the abstract is adjacent to the thesis’ back cover.

x

List of Figures

 Java source code compilation and execution. 
 A recursive factorial function in Java and its corresponding bytecode. 
 Call frames in the architecture of the JVM. 
 An example of good and bad crossovers. 
 Correct and incorrect CFG-compliant Java snippets. 
 A BFS-like traversal of the data-flow graph 
 Illustrations to operand stack requirements in bytecode crossover con-

straints. 
 Illustrations to the local variables requirements in bytecode crossover

constraints. 

 Tree representation of theworst generation- individual in the simple
symbolic regression experiment of Koza [a]. 

 Simple symbolic regression in Java, Koza’s worst generation- indi-
vidual. 

 Decompiled evolved simple symbolic regression method. 
 Decompiled evolved simple symbolic regressionmethod, another ex-

periment. 
 Decompiled evolved complex symbolic regression method. 
 e Santa Fe food trail for the artificial ant problem, and the path

taken by the Avoider individual in Koza’s experiment. 
 Tree representation and Java implementation of Koza’s Avoider indi-

vidual. 
 Two evolved solutions to the artificial ant problem. 
 Ant trails that result from executing the evolved solutions. 
 Intertwined spirals dataset, Koza’s original result, and two evolved

solutions. 
 “Zooming out” of Koza’s and FINCH solution. 
 Intertwined spirals seed method. 
 Decompiled evolved intertwined spirals method. 
 Koza’s intertwined spirals best-of-run S-expression. 
 Evolving method of the seed individual for the array sum problem. . 

xi

L  F

 Decompiled ideal array sum individual. 
 Evolving method of the seed individual for the List version of the ar-

ray sum problem. 
 Decompiled ideal array sum individual (List version). 
 Evolving method of the seed individual for the recursive List version

of the array sum problem. 
 Decompiled ideal array sum individual (recursive List version). . . . 
 An α-β-pruning variant of the minimax algorithm. 
 FINCH setup for improving imperfect tic-tac-toe strategies. 
 Decompiled evolved solution to an imperfect tic-tac-toe seed. 

xii

List of Tables

 Operand stack and local variables array requirements during execu-
tion of the factorial method. 

 Operand stack and local variables requirements for several bytecode
segments of the factorial method. 

 Summary of evolutionary runs. 
 Simple symbolic regression: Parameters. 
 Complex symbolic regression: Parameters. 
 Artificial ant: Parameters. 
 Intertwined spirals: Parameters. 
 Array Sum: Parameters. 
 Tic-tac-toe: Parameters. 
 Tic-tac-toe: Four different single-error imperfections and their game

performance effect. 

xiii

xiv

Abstract

T  presents FINCH(FertileDarwinianBytecodeHarvester), amethod-
ology for evolving Java bytecode, enabling the evolution of extant, unre-

stricted Java programs, or programs in other languages that compile to Java byte-
code. e name of this thesis, “Darwinian Soware Engineering”, reflects our
optimistic view of how this methodology may affect integration of evolutionary
computation into soware engineering practices.

An evolutionary computation system requires the key features of selection, re-
combination, and evaluation of individuals through generations. e most com-
plex of these features, once we try to apply them to programs in extant, generic
programming language, is recombination. Our approach is based upon the no-
tion of compatible crossover, which produces correct programs by performing
operand stack-, local variables-, and control flow-based compatibility checks on
source and destination bytecode sections.

As far as we are aware, this approach to evolving extant soware is unique. In
the beginning of this thesis, we contrast our approachwith existing work that uses
restricted subsets of the Java bytecode instruction set as a representation language
for individuals in genetic programming.

We subsequently describe FINCH’s implementation, outlining the algorithms
that achieve compatible crossover for producing correct individuals. We discuss
viability of alternative implementations, and describe how obstacles such as non-
termination are dealt with.

Aerwards, we demonstrate FINCH’s unqualified success at solving a host
of problems, including simple and complex regression, trail navigation, image
classification, array sum, and tic-tac-toe. FINCH exploits the richness of the Java



A

VirtualMachine (JVM) architecture and type system, ultimately evolving human-
readable solutions in the form of Java programs.

We hope that the ability to evolve Java programs will lead to a valuable new
tool in the soware engineer’s toolkit.

Work described herein has been previously published in [Orlov and Sipper,
, , , Orlov et al., ].

Categories and Subject Descriptors

I.. [Artificial Intelligence]: Automatic Programming—program transformation,
program modification; D.. [Programming Languages]: Language Constructs
and Features; D.. [Soware Engineering]: Design Tools and Techniques.1

Keywords

Soware evolution, genetic programming, evolutionary computation, Java byte-
code.

1According to the ACM Computing Classification System: http://www.acm.org/about/

class/ɴɼɼɻ



http://www.acm.org/about/class/1998
http://www.acm.org/about/class/1998

C
Introduction

I  recent comprehensive monograph surveying the field of Genetic Program-
ming (GP), Poli et al. noted that:

While it is common to describe GP as evolving programs, GP is not
typically used to evolve programs in the familiar Turing-complete
languages humans normally use for soware development. It is in-
stead more common to evolve programs (or expressions or formu-
lae) in a more constrained and oen domain-specific language. [Poli
et al., , ch. .; emphasis in original]

e above statement is (arguably) true not only where “traditional” tree-based
GP is concerned, but also for other forms of GP, such as linear GP and grammat-
ical evolution [Poli et al., ].

In this work, we propose a method to evolutionarily improve actual, extant
soware , which was not intentionally written for the purpose of serving as a GP
representation in particular, nor for evolution in general. e only requirement
is that the soware source code be either written in Java—a highly popular pro-
gramming language—or can be compiled to Java bytecode.

e established approach in GP involves the definition of functions and ter-
minals appropriate to the problem at hand, aer which evolution of expressions
using these definitions takes place [Koza, a, Poli et al., ]. is approach
does not, however, suit us, since we seek to evolve extant Java programs. Evolving
the source code directly is not a viable option, either. e source code is intended
for humans to write and modify, and is thus abundant in syntactic constraints.
ismakes it very hard to produce viable offspring with enough variation to drive
the evolutionary process (more on this in section .). We therefore turn to yet
another well-explored alternative: evolution of machine code [Nordin, ].



. I

Java compilers almost never produce machine code directly, but instead com-
pile source code to platform-independent bytecode, to be interpreted in soware
or, rarely, to be executed in hardware by a Java VirtualMachine (JVM) [Lindholm
and Yellin, ]. e JVM is free to apply its own optimization techniques, such
as Just-in-Time (JIT), on-demand compilation to nativemachine code—a process
that is transparent to the user. e JVM implements a stack-based architecture
with high-level language features such as object management and garbage col-
lection, virtual function calls, and strong typing. e bytecode language itself is
a well-designed assembly-like language with a limited yet powerful instruction
set [Engel, , Lindholm and Yellin, ]. Figure  on p.  shows a recur-
sive Java program for computing the factorial of a number, and its corresponding
bytecode.

e JVM architecture, illustrated in fig.  on p. , is successful enough that
several programming languages compile directly to Java bytecode (e.g., Scala,
Groovy, Jython, Kawa, JavaFX Script, and Clojure). Moreover, Java decompilers
are available, which facilitate restoration of the Java source code from compiled
bytecode. Since the design of the JVM is closely tied to the design of the Java pro-
gramming language, such decompilation oen produces code that is very similar
to the original source code [Miecznikowski and Hendren, ].

We chose to automatically improve extant Java programs by evolving the re-
spective compiled bytecode versions. is allows us to leverage the power of a
well-defined, cross-platform, intermediatemachine language at just the right level
of abstraction: We do not need to define a special evolutionary language, thus ne-
cessitating an elaborate two-way transformation between Java and our language;
nor do we evolve at the Java level, with its encumbering syntactic constraints,
which render the genetic operators of crossover and mutation arduous to imple-
ment.

Note that we do not wish to invent a language to improve upon some aspect or
other of GP (efficiency, terseness, readability, etc.), as has been amply done (and
partly summarized in chapter  and [Orlov and Sipper, ]). Nor do we wish
to extend standard GP to become Turing complete, an issue which has also been
addressed [Woodward, ]. Rather, conversely, our point of departure is an
extant, highly popular, general-purpose language, with our aim being to render
it evolvable. e ability to evolve Java programs will hopefully lead to a valuable
new tool in the soware engineer’s toolkit.

e FINCH system, which affords the evolution of unrestricted bytecode, is
described in chapter , beginning with questioning what exactly should we evolve



— why not simply target source code, or abstract syntax trees? Aer designating
bytecode as the optimal evolutionary material, we consider dealing with non-
termination of programs. Why is a straightforward limit on execution time not
good enough, and what better alternatives does working with Java bytecode offer?
In addition, does mangling bytecode lose compiler optimizations? e chapter
describes surprising insights into the optimization issue. We then show precisely
how compatible bytecode sections can be detected without losing viable crossover
possibilities.

Chapter  then presents the application of FINCH to evolving solutions to sev-
eral hard problems: simple and complex regression, trail navigation, intertwined
spirals (image classification), array sum, and tic-tac-toe. We start by reproducing
experiments with no need for advanced programming features (although differ-
ent primitive and class types, as well as library calls, are nevertheless taken ad-
vantage of), and then progress further to show FINCH’s ability to automatically
handle control flow, loops, and recursion. We show that using data structures is
completely transparent to FINCH when solving the array sum problem, and that
the rich set of available language features enables production of phenotypically
“interesting” individuals in intertwined spirals. Tic-tac-toe experiment offers a
glimpse into automatic improvement of extant soware.

We end with concluding remarks and future work avenues in chapter .





C
RelatedWork

A  of researchers previously described bytecode evolution, though as
an extension of the standard GP concept, namely, that of using bytecode, or

some variant thereof, as a representation for solving a particular problem, rather
than considering extant programs with the aim of evolving them directly. at is,
none of the research surveyed below allows the treatment of existing unrestricted
bytecode as the evolving genotype. It should be noted that some of the bytecode-
related papers appeared as brief summaries, without peer review, during the time
frame when Java started to gain popularity.

Stack-based GP (Stack GP) was introduced by Perkis []. In Stack GP,
instructions operate on a numerical stack, and whenever a stack underflow oc-
curs (i.e., an operand for the operation is unavailable), the respective instruction
is ignored. Whenever multiple data types are desired, multiple stacks are pro-
posed as an alternative to strongly typed GP [Montana, ]. Stack GP possesses
a number of disadvantages with respect to our aims: First, ignoring stack under-
flows will produce incorrect bytecode segments with ambiguous decompilation
results. Second, allowing such code will unnecessarily enlarge the search space,
which is already huge—aer all, we are evolving extant, real-world programs, and
not evolving programs from scratch using a limited instruction set. Lastly, our ap-
proach assumes absolutely no control over the JVM architecture: we do not create
stacks at will but content ourselves with JVM’s single multi-type data stack and
general-purpose multi-type registers (see fig. ).

An early introduction to Java bytecode genetic programming (JBGP)was given
by Lukschandl et al. [], who evolved bytecode sequences with a small set of
simple arithmetic and custom branch-like macro instructions. Lukschandl et al.
evolved very limited individuals with a single floating-point type in one local vari-



. R W

able and no control structures, and therefore only needed to consider effects of
instruction blocks on operand stack depth in order to avoid stack overflow and
underflow errors. A later work by Lukschandl et al. [] used this method in a
distributed bytecode evolutionary system (DJBGP), and presented its application
to a telecom routing problem. Similar approaches were independently introduced
by other researchers, as bcGP [Harvey et al., ] (which also handles branch-
ing instructions, but does not discuss crossover compatibility) and Klahold et al.
[] (which seems to leave compatibility checks to the Java verifier, although too
few details are provided). e aforementioned approaches are conceptually lim-
ited to using Java bytecode as yet another genotype representation for GP. None
can be applied to evolving correct individuals based on unrestricted bytecode—
which we show how to do in the following section.

Once we consider non-bytecode stack-based GP, Tchernev [] offered a
more thorough treatment of requirements for crossover in the programming lan-
guage Forth, arguing that ensuring same-stack depth at crossover points is not
only better than GP’s popular subtree crossover, but is an engine for combining
building blocks that is strictly different from a macromutation. However, simi-
lar to the works discussed previously, Tchernev considers only the stack depth in
synthetic individuals with restricted primitives. Tchernev and Phatak [] later
introduced a similar technique for correct crossover of high-level control struc-
tures. is work is not applicable at all to Java bytecode evolution, since control
structures are not expressed as such in bytecode, and are instead translated into
simpler goto instructions.

Evolutionary program induction using binary machine code (AIM-GP) was
introduced by Nordin [] as the fastest known genetic programming method.
Although Nordin et al. [] later mentioned Java as a possible evolutionary tar-
get, the paper is scarce on details. As of now, D, the commercial succes-
sor to AIM-GP, can only produce Java source code as a decompilation result from
an evolved nativemachine code individual, as opposed to our goal of evolving the
intermediate-level bytecode. In AIM-GP, the creation of viable offspring individ-
uals from parent programs is realized via a careful multi-granularity crossover
process. It is interesting to contrast this work with the attempt by Kühling et al.
[] to forgo any constraints on code and on evolutionary operators, and in-
stead trap all exceptions of code that is executed as a separate encapsulated entity.
We do not expect this approach to overcome the huge search space that results
from evolving Java programswith unrestricted crossover andmutation operators.
However, since we decided that the evolutionary process should stay close to the



JVM, we cannot completely safeguard bytecode execution from exceptional con-
ditions, as done e.g, by Huelsbergen []. us, evaluating evolving bytecode
individuals in an encapsulated environment—a sandbox—is still necessary.

In summary, although all these works touched upon some aspect or other of
Java bytecode (or, at least, machine code) evolution, they did so in a restrictedway,
the ultimate goal being that of affording a beneficial genomic representation for
problem solving with genetic programming. Our departure point may be seen as
one diametrically opposed: given the huge universe of unrestricted Java bytecode,
as is programs, we aim to perform evolution within this realm.

Spector and Robinson [] provide an interesting treatment of a stack-
based architecture using the elaborately designed, expressive, Turing-complete
Pushprogramming language, which also supports autoconstructive evolution (where
individual programs are responsible for the construction of their own children).
Push maintains multiple type-specific stacks, while at the same time placing vir-
tually no syntax restrictions on the evolving code. For example, instructions with
an insufficient number of operands on the stack are simply ignored, following
the “permissive execution” modus operandi. Our above remarks regarding Stack
GP [Perkis, ] mostly apply to [Spector and Robinson, ] as well, given the
similarity of the two approaches. Moreover, the stack-per-type approach cannot
handle evolution of object-oriented programs with hierarchical types very well.

More recently, Servant et al. [] introduced JEB, an open-source tool for
Java byte-code evolution, as an extension to the ECJ evolutionary computation
soware package [Luke and Panait, ]. In JEB, genotype and phenotype byte-
codes are separate entities, and stack underflows are corrected during genotype-
phenotype translation. Other limitations thatwe discussed previously—restricted
instruction set, no handling of types, etc.—apply to this work as well. is is how-
ever an interesting approach—yet it is undesirable for evolving extant bytecode,
since it introduces a separate representation for evolving programs and increases
the search space. Reduction of search-space size is better achieved with properly-
defined compatible evolutionary operators, as discussed next.

Another line of recent research related to ours is that of soware repair by
evolutionary means. Forrest et al. [] automatically repair C programs by
evolving abstract syntax tree nodes on the faulty execution path, where at least
one negative test case is assumed to be known. e resulting programs are then
compiled before evaluation. Unlike FINCH, which works with individuals in
compiled form while seamlessly handling semantic bytecode constraints, the ap-
proach by Forrest et al. is bound to be problematic when handling large faulty



. R W

execution paths, or multiple-type, object-oriented programs. Additionally, find-
ing precise negative test cases highlighting a short faulty execution path is typ-
ically the most difficult debugging problem a human programmer faces—fixing
the bug therefrom is usually straightforward. is approach is not an alternative
to FINCH, therefore, which can take an existing program as a whole, and evo-
lutionarily improve it—free from various compilability requirements, which are
relevant to abstract syntax trees, but not to Java bytecode. We shall demonstrate
this capability of FINCH in section ., where the programmer is in possession of
only an approximate implementation of an optimal algorithm—a “correct” exe-
cution path does not exist prior to the evolutionary process.

ere is also the recent work by Arcuri [] that repairs Java source code
using syntax-tree transformations. It is discussed later in section .. Overall, due
to availability of techniques such as fault localization, soware repair is a much
easier problem to tackle than unrestricted evolution of programs, and this line of
research has seen a lot of quality research, e.g., by Schulte et al. [].

An interesting direction of research is optimizingnon-functional soware prop-
erties, explored byWhite et al. []. We did not focus on this direction, although
it is partially related to unexpected phenotype qualities observed in intertwined
spirals experiment in section ..



C
Bytecode Evolution

B  the intermediate, platform-independent representation of Java
programs, created by a Java compiler. Figure  depicts the process by which

Java source code is compiled to bytecode and subsequently loaded by the JVM,
which verifies it and (if the bytecode passes verification) decides whether to in-
terpret the bytecode directly, or to compile and optimize it—thereupon executing
the resultant native code. e decision regarding interpretation or further com-
pilation (and optimization) depends upon the frequency at which a particular
method is executed, its size, and other parameters.

. Why Target Bytecode for Evolution?

Our decision to evolve bytecode instead of the more high-level Java source code
is guided in part by the desire to avoid altogether the possibility of producing
non-compilable source code. e purpose of source code is to be easy for human
programmers to create and tomodify, a purposewhich conflicts with the ability to
automatically modify such code. We note in passing that we do not seek an evolv-
able programming language—a problem tackled, e.g., by Spector and Robinson
[]—but rather aim to handle the Java programming language in particular.

Evolving bytecode instead of source code alleviates the issue of producing
non-compilable programs to some extent—but not completely. Java bytecode
must be correct with respect to dealing with stack and local variables (cf. fig. ).
Values that are read and written should be type-compatible, and stack underflow
must not occur. e JVM performs bytecode verification and raises an exception
in case of any such incompatibility.



. B E

class F
{
 int fact(int n)
 {
 int ans = 1;

 if (n > 0)
 ans = n *
 fact(n-1);

 return ans;
 }
}

iconst_1
istore_2
iload_1
ifle 16
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual #2
imul
istore_2
iload_2
ireturn

mov %edx,%eax
dec %eax
test %eax,%eax
jle 0x00007f6c95a274
mov %edx,%ebp
add $0xfffffffffffff
test %ebp,%ebp
jle 0x00007f6c95a274
mov %eax,0x4(%rsp)
mov %edx,(%rsp)
add $0xfffffffffffff
callq 0x00007f6c959fb7
imul %ebp,%eax
imul 0x4(%rsp),%eax
mov (%rsp),%edx

jmp 0xb55d6f08
mov %edx,%esi
dec %esi
cmp $0x0,%esi
jg 0xb55d6ee6
mov $0x1,%esi
jmp 0xb55d6f05
mov %edx,0x24(%esp)
mov %esi,%edi
dec %edi
mov %edi,%edx
mov %esi,0x20(%esp)
call 0xb558df50
mov 0x20(%esp),%esi
imul %esi,%eax
mov %eax,%esi
mov 0x24(%esp),%edx
imul %edx,%esi

restore
sub %i1, 1, %l0
cmp %l0, 0
bg,pn %icc, 0xfbc83
nop
b %icc, 0xfbc83
mov 1, %i0 ! 1
sub %l0, 1, %o1
call 0xfbc32ea0
mov %i0, %o0
mulx %l0, %o0, %i0
mulx %i1, %i0, %i0
sethi %hi(0xff05000
ld [%l0], %g0
ret

Source Bytecode IA32

AMD64

SPARC

Compile

Platform-independent

Java compiler

Compile

Platform-dependent

just-in-time compiler

Verify

Interpret

Load

Figure . Java source code is first compiled to platform-independent bytecode by a Java
compiler. e JVM only loads the bytecode, which it verifies for correctness, and raises
an exception in case the verification fails. Aer that, the JVM typically interprets the
bytecode until it detects that it would be advantageous to compile it, with optimizations,
to native, platform-dependent code. e native code is then executed by the CPU as any
other program. Note that no optimization is performed when Java source code is com-
piled to bytecode. Optimization only takes place during compilation from bytecode to
native code (see section .).

class F {
int fact(int n) {

// offsets ɷ-ɺ
int ans = ɴ;

// offsets ɻ-ɼ
if (n > ɱ)

// offsets ɿ-ɺɾ
ans = n *

fact(n-ɴ);

// offsets ɺɿ-ɺʀ
return ans;

}}

(a)e original Java source code. Each line is
annotatedwith the corresponding code array
offsets range.

ɱ iconst_ɴ
ɴ istore_ɵ
ɵ iload_ɴ
ɶ ifle ɴɹ
ɹ iload_ɴ
ɺ aload_ɱ
ɻ iload_ɴ
ɼ iconst_ɴ

ɴɱ isub
ɴɴ invokevirtual #ɵ
ɴɷ imul
ɴɸ istore_ɵ
ɴɹ iload_ɵ
ɴɺ ireturn

(b) e compiled bytecode. Offsets in the
code array are shown on the le.

Figure . A recursive factorial function in Java (a), and its corresponding bytecode (b).
e argument to the virtual method invocation (#ɵ) references the int F.fact(int)
method via the constant pool.



.. Why Target Bytecode for Evolution?

fact(7) method call frame

fact(6) method call frame

fact(5) method call frame (active)

int

5

“F”

(this)

int

4

(stack top)

“F”

(this)

int

5

int

1

0 1 2

11

“F”

object

Operand Stack
References objects on the heap. Used to

provide arguments to JVM instructions, such

as arithmetic operations and method calls.

Local Variables Array
References objects on the heap.

Contains method arguments and

locally defined variables.

Program Counter
Holds offset of currently executing

instruction in method code area.

Heap
Shared objects store.

Figure . Call frames in the architecture of the Java Virtual Machine (JVM), during ex-
ecution of the recursive factorial function code shown in fig. , with parameter n = .
e top call frame is in a state preceding execution of invokevirtual. is instruction
will pop a parameter and an object reference from the operand stack, invoke the method
fact of class F, and open a new frame for the fact(ɷ) call. When that frame closes, the
returned value will be pushed onto the operand stack.

We wish not merely to evolve bytecode, but indeed to evolve correct byte-
code. is task is hard, because our purpose is to evolve given, unrestricted code,
and not simply to leverage the capabilities of the JVM to perform GP. erefore,
basic evolutionary operations, such as bytecode crossover and mutation, should
produce correct individuals. Below we provide a summary of our previous work
on defining bytecode crossover—full details are available in [Orlov and Sipper,
].

We define a good crossover of two parents as one where the offspring is a cor-
rect bytecode program, meaning one that passes verification with no errors; con-
versely, a bad crossover of two parents is one where the offspring is an incorrect
bytecode program, meaning one whose verification produces errors. While it is
easy to define a trivial slice-and-swap crossover operator on two programs, it is
far more arduous to define a good crossover operator. is latter is necessary in
order to preserve variability during the evolutionary process, because incorrect
programs cannot be run, and therefore cannot be ascribed a fitness value—or, al-
ternatively, must be assigned the worst possible value. Too many bad crossovers
will hence produce a population with little variability, on whose vital role Darwin
averred:



. B E

If then we have under nature variability and a powerful agent always
ready to act and select, why should we doubt that variations in any
way useful to beings, under their excessively complex relations of life,
would be preserved, accumulated, and inherited? [Darwin, ]

Note that we use the term good crossover to refer to an operator that produces
a viable offspring (i.e., one that passes the JVM verification) given two parents;
compatible crossover [Orlov and Sipper, ] is one mechanism by which good
crossover can be implemented.

As an example of compatible crossover, consider two identical programs with
the same bytecode as in fig. , which are reproduced as parents A and B in fig. .
We replace bytecode instructions at offsets – in parentAwith the single iload_ɵ
instruction at offset  from parent B. Offsets – correspond to the fact(n-ɴ)
call that leaves an integer value on the stack, whereas offset  corresponds to
pushing the local variable ans on the stack. is crossover, the result of which
is shown as offspring x in fig. , is good, because the operand stack is used in a
compatible manner by the source segment, and although this segment reads the
variable ans that is not read in the destination segment, that variable is guaranteed
to have been written previously, at offset .

Alternatively, consider replacing the imul instruction in the newly formed off-
spring xwith the single invokevirtual instruction fromparentB. is crossover
is bad, as illustrated by incorrect offspring y in fig. . Although both invokevir-

tual and imul pop two values from the stack and then push one value, invoke-
virtual expects the topmost value to be of reference type F, whereas imul expects
an integer. Another negative example is an attempt to replace bytecode offsets –
in parent B (that correspond to the int ans=ɴ statement) with an empty segment.
In this case, illustrated by incorrect offspring z in fig. , variable ans is no longer
guaranteed to be initialized when it is read immediately prior to the function’s
return, and the resulting bytecode is therefore incorrect.

We chose bytecode segments randomly before checking them for crossover
compatibility as follows: For a given method, a segment size is selected using
a given probability distribution among all bytecode segments that are branch-
consistent [Orlov and Sipper, ]; then a segment with the chosen size is uni-
formly selected. Whenever the chosen segments result in bad crossover, bytecode
segments are chosen again (up to some limit of retries). Note that this selection
process is very fast (despite the retries), as it involves fast operations—and, most
importantly, we ensure that crossover always produces a viable offspring. More



.. e Grammar Alternative

Parent A Parent B

iconst_1
istore_2
iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

(correct)

Offspring x

iconst_1
istore_2
iload_1
ifle
iload_1
iload_2
imul
istore_2
iload_2
ireturn

iconst_1
istore_2
iload_1
ifle
iload_1
iload_2
invokevirtual
istore_2
iload_2
ireturn

(incorrect)

Offspring y

iconst_1
istore_2
iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

iload_1
ifle
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual
imul
istore_2
iload_2
ireturn

(incorrect)

Offspring z

x

y

z

Figure . An example of good and bad crossovers. e two identical individuals A and B
represent a recursive factorial function (see fig. ; here we use an arrow instead of branch
offset). In parent A, the bytecode sequence that corresponds to the fact(n-ɴ) call that
leaves an integer value on the stack, is replaced with the single instruction in B that cor-
responds to pushing the local variable ans on the stack. e resulting correct offspring x
and the original parent B are then considered as two new parents. We see that either
replacing the first two instructions in B with an empty section, or replacing the imul in-
struction in x with the invokevirtual instruction from B, result in incorrect bytecode,
shown as offspring y and z—see main text for full explanation.

intelligent choices of bytecode segments are possible, as will be discussed in chap-
ter .

e full formal specification of compatible bytecode crossover is provided in
sections . to .. Note that we have not implemented (nor found necessary for
the problems tackled so far) sophisticated mutation operators, a task we leave for
future work, as described in chapter . Only a basic constantmutator (section .)
was implemented.

. The Grammar Alternative

One might ask whether it is really necessary to evolve bytecode in order to sup-
port the evolution of unrestricted Java soware. Aer all, Java is a programming
language with strict, formal rules, which are precisely defined in Backus-Naur
Form (BNF). One could make an argument for the possibility of providing this
BNF description to a grammar evolutionary system [O’Neill and Ryan, ] and
evolving away.



. B E

float x; int y = ɺ;
if (y >= ɱ)
x = y;

else
x = -y;

System.out.println(x);

(a) A correct Java snippet.

int x = ɺ; float y;
if (y >= ɱ) {

y = x;
x = y;

}
System.out.println(z);

(b) An incorrect Java snippet.

Figure . Two Java snippets that comply with the context-free grammar rules of the pro-
gramming language. However, only snippet (a) is legal once the full Java Language Spec-
ification [Gosling et al., ] is considered . Snippet (b), though Java-compliant syntac-
tically, is revealed to be ill-formed when semantics are thrown into play.

We disagree with such an argument. e apparent ease with which one might
apply the BNF rules of a real-world programming language in an evolutionary
system (either grammatical or tree-based) is an illusion stemming from the blurred
boundary between syntactic and semantic constraints [Poli et al., , ch. ..].
Java’s formal (BNF) rules are purely syntactic, in no way capturing the language’s
type system, variable visibility and accessibility, and other semantic constraints.
Correct handling of these constraints in order to ensure the production of vi-
able individuals would essentially necessitate the programming of a full-scale Java
compiler—a highly demanding task, not to be taken lightly. is is not to claim
that such a task is completely insurmountable—e.g., an extension to Context-Free
Grammars (CFGs), such as logic grammars, can be taken advantage of in order
to represent the necessary contextual constraints [Wong and Leung, ]. But
we have yet to see such a GP implementation in practice, addressing real-world
programming problems.

We cannot emphasize the distinction between syntax and semantics strongly
enough. Consider, for example, the Java program segment shown in fig. (a).
It is a seemingly simple syntactic structure, which belies, however, a host of se-
mantic constraints, including: type compatibility in variable assignment, variable
initialization before read access, and variable visibility. e similar (and CFG-
conforming) segment shown in fig. (b) violates all these constraints: variable y
in the conditional test is uninitialized during a read access, its subsequent assign-
ment to x is type-incompatible, and variable z is undefined.

It is quite telling that despite the popularity and generality of grammatical
evolution, we were able to uncover only a single case of evolution using a real-
world, unrestricted phenotypic language—involving a semantically simple hard-
ware description language (HDL). Mizoguchi et al. [] implemented the com-



.. e Halting Issue

plete grammar of SFL (Structured Function description Language) [Nakamura
et al., ] as production rules of a rewriting system, using approximately (!)
rules for a language far simpler than Java. e semantic constraints of SFL—an
object-oriented, register-transfer-level language—are sufficiently weak for using
its BNF directly:

By designing the genetic operators based on the production rules and
by performing them in the chromosome, a grammatically correct SFL
program can be generated. is eliminates the burden of eliminating
grammatically incorrect HDL programs through the evolution pro-
cess and helps to concentrate selective pressure in the target direc-
tion. [Mizoguchi et al., ]

Arcuri [] recently attempted to repair Java source code using syntax-tree
transformations. His JAFF system is not able to handle the entire language—only
an explicitly defined subset (see [Arcuri, , Table .]), and furthermore, ex-
hibits a host of problems that evolution of correct Java bytecode avoids inherently:
individuals are compiled at each fitness evaluation, compilation errors occur de-
spite the syntax-tree modifications being legal (cf. discussion above), lack of sup-
port for a significant part of the Java syntax (inner and anonymous classes, labeled
break and continue statements, Java . syntax extensions, etc.), incorrect sup-
port of method overloading, and other problems:

e constraint system consists of  basic node types and  polymor-
phic types. For the functions and the leaves, there are  different
types of constraints. For each program, we added as well the con-
straints regarding local variables and method calls. Although the
constraint system is quite accurate, it does not completely represent
yet all the possible constraints in the employed subset of the Java lan-
guage (i.e., a program that satisfies these constraints would not be
necessarily compilable in Java). [Arcuri, ]

FINCH, through its clever use of Java bytecode, attains a scalability leap in
evolutionarily manageable programming language complexity.

. The Halting Issue

An important issue that must be considered when dealing with the evolution of
unrestricted programs is whether they halt—or not [Langdon and Poli, ].



. B E

Whenever Turing-complete programs with arbitrary control flow are evolved, a
possibility arises that computation will turn out to be unending. A program that
has acquired the undesirable non-termination property during evolution is exe-
cuted directly by the JVM, and FINCH has nearly no control over the process.

A straightforward approach for dealing with non-halting programs is to limit
the execution time of each individual during evaluation, assigning a minimal fit-
ness value to programs that exceed the time limit. is approach, however, suf-
fers from two shortcomings: First, limiting execution time provides coarse-time
granularity at best, is unreliable in the presence of varying CPU load, and as a re-
sult is wasteful of computer resources due to the relatively high time-limit value
that must be used. Second, applying a time limit to an arbitrary program requires
running it in a separate thread, and stopping the execution of the thread once it
exceeds the time limit. However, externally stopping the execution is either un-
reliable (when interrupting the thread that must then eventually enter a blocked
state), or unsafe for the whole application (when attempting to kill the thread).1

erefore, in FINCHwe exercise a different approach, taking advantage of the
lucid structure offered by Java bytecode. Before evaluating a program, it is tem-
porarily instrumented with calls to a function that throws an exception if called
more than a given number of times (steps). at is, a call to this function is in-
serted before each backward branch instruction and before each method invo-
cation. us, an infinite loop in any evolved individual program will raise an
exception aer exceeding the predefined steps limit. Note that this is not a coarse-
grained (run)time limit, but a precise limit on the number of steps.

. (No) Loss of Compiler Optimization

Another issue that surfaces when bytecode genetic operators are considered is
the apparent loss of compiler optimization. Indeed, most native-code producing
compilers provide the option of optimizing the resultingmachine code to varying
degrees of speed and size improvements. ese optimizations would presumably
be lost during the process of bytecode evolution.

Surprisingly, however, bytecode evolution does not induce loss of compiler
optimization, since there is no optimization to begin with! e common assump-
tion regarding Java compilers’ similarity to native-code compilers is simply in-
correct. As far as we were able to uncover, with the exception of the IBM Jikes

1For the intricacies of stopping Java threads see http://java.sun.com/javase/ɹ/docs/

technotes/guides/concurrency/threadPrimitiveDeprecation.html.



http://java.sun.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://java.sun.com/javase/6/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

.. Bytecode Evolution Principles

Compiler (which has not been under development since , and which does
not support modern Java), no Java-to-bytecode compiler is optimizing. Sun’s
Java Compiler, for instance, has not had an optimization switch since version ..2
Moreover, even theGNUCompiler for Java, which is part of the highly optimizing
GNU Compiler Collection (GCC), does not optimize at the bytecode-producing
phase—forwhich it uses the EclipseCompiler for Java as a front-end—and instead
performs (optional) optimization at the native code-producing phase. e rea-
son for this is that optimizations are applied at a later stage, whenever the JVM
decides to proceed from interpretation to just-in-time compilation [Kotzmann
et al., ].

e fact that Java compilers do not optimize bytecode does not preclude the
possibility of doing so, nor render it particularly hard in various cases. Indeed,
in FINCH we apply an automatic post-crossover bytecode transformation that is
typically performed by a Java compiler: dead-code elimination. Aer crossover
is done, it is possible to get a method with unreachable bytecode sections (e.g., a
forward goto with no instruction that jumps into the section between the goto
and its target code offset). Such dead code is problematic in Java bytecode, and
it is therefore automatically removed from the resulting individuals by our sys-
tem. is technique does not impede the ability of individuals to evolve introns,
since there is still a multitude of other intron types that can be evolved [Brameier
and Banzhaf, ] (e.g., any arithmetic bytecode instruction not affecting the
method’s return value, which is not considered dead-code bytecode, though it is
an intron nonetheless).

. Bytecode Evolution Principles

e Java virtualmachine is a stack-based architecture for executing Java bytecode.
e JVM holds a stack for each execution thread, and creates a frame on this
stack for each method invocation. e frame contains a code array, an operand
stack, a local variables array, and a reference to the constant pool of the current
class [Engel, ]. e code array contains the bytecode to be executed by the
JVM.e local variables array holds all method (or function) parameters, includ-
ing a reference to the class instance in which the current method executes. In ad-
dition, the variables array also holds local-scope variables. e operand stack is

2See the old manual page at http://docs.oracle.com/javase/ɴ.ɶ/docs/tooldocs/

solaris/javac.html, which contains the following note in the definition of the -O (Optimize)
option: the -O option does nothing in the current implementation of javac.



http://docs.oracle.com/javase/1.3/docs/tooldocs/solaris/javac.html
http://docs.oracle.com/javase/1.3/docs/tooldocs/solaris/javac.html

. B E

Table.O
perand

stack
and

localvariablesarrayrequirem
entsduring

execution
ofthefactorialm

ethod.A
n
‘a’denotesatype-annotated

objectreference,
and

an
‘i’denotesan

integertype.Pop
listsaregiven

in
reverseorder.A

listoftypeson
thestackisgiven

aereach
instruction,w

ith
stacktop

attherightof
thelist.x:y

standsforread
orw

riteaccessto
localvariablexw

ith
type

y.
einstructionsaredivided

into
fourparts,each

partcorrespondingto
asingle

source
line

in
fig.(a).

e
argum

entto
invokevirtual

instruction
(#ɵ)referencesa

value
in

the
constantpoolthatresolvesto

the
int

F.fact(int)
m

ethod
signature.

O
ffset

Instruction
D
escription

Stack
pops

Stack
pushes

Stack
state

Vars
read

Vars
w
ritten


iconst_ɴ

push
on

thestack
i

i


istore_ɵ
pop

stack
to

thelocalvariable
ans

i
∅

:i


iload_ɴ

push
n

on
thestack

i
i

:i


ifle


pop
stack,and

jum
p
to
iload_ɵifvalue⩽

;note
thattheencoded

offsetisrelative(+)
i

∅


iload_ɴ

push
n

on
thestack

i
i

:i


aload_ɱ
push

this
on

thestack
a/F

i,a/F
:a/F


iload_ɴ

push
n

on
thestack

i
i,a/F,i

:i


iconst_ɴ
push

on
thestack

i
i,a/F,i,i


isub

pop
tw

o
values,subtract,and

push
result

i,i
i

i,a/F,i


invoke-virtual
#ɵ

pop
object

reference
and

param
eter

from
the

stack,and
invokevirtualm

ethod;returned
value

ison
thestack

a/F,i
i

i,i


imul

pop
tw

o
values,m

ultiply,and
push

result
i,i

i
i


istore_ɵ

pop
stack

to
thelocalvariable

ans
i

∅
:i


iload_ɵ

push
thelocalvariable

ans
on

thestack
i

i
:i


ireturn

pop
stack,and

return
valueto

thecalling
fram

e
i

∅



.. Bytecode Evolution Principles

used by stack-based instructions, and for arguments when calling other methods.
A method call moves parameters from the caller’s operand stack to the callee’s
variables array; a return moves the top value from the callee’s stack to the caller’s
stack, and disposes of the callee’s frame. Both the operand stack and the variables
array contain typed items, and instructions always act on a specific type. e rel-
evant bytecode instructions are prefixed accordingly: ‘a’ for an object or array
reference, ‘i’ and ‘l’ for integral types int and long, and ‘f’ and ‘d’ for floating-
point types float and double.3 Finally, the constant pool is an array of references
to classes, methods, fields, and other unvarying entities. e JVM architecture is
illustrated in fig. 

To demonstrate the operation of the JVM, consider a simple recursive pro-
gram for computing the factorial of a number, shown in fig.  on p. . Table 
shows a step-by-step execution of the bytecode. e operand stack is initially
empty, and the local variables array contains a reference to this (the current class
instance) at index , and the parameter n at index . e local variable ans is al-
located the index , but the corresponding cell is uninitialized.

In our evolutionary setup, the individuals are bytecode sequences annotated
with all the stack and variables information shown in table . is information
is gathered in one pass over the bytecode, using the ASM bytecode manipula-
tion and analysis library [Bruneton et al., ]. Aerwards, similar information
for any sequential code segment in the individual can be aggregated separately—
table  shows this information for several bytecode segments. is preprocessing
step allows us to realize compatible two-point crossover on bytecode sequences.
Code segments can be replaced only by other segments that use the operand stack
and the local variables array in a depth-compatible and type-compatible man-
ner. e compatible crossover thusmaximizes the viability potential for offspring,
preventing type incompatibility and stack underflow errors that would otherwise
plague indiscriminating bytecode crossover. Note that the crossover operation is
unidirectional, or asymmetric—the code segment compatibility criterion as de-
scribed here is not a symmetric relation. An ability to replace segment α in in-
dividual A with segment β in individual B does not imply an ability to replace
segment β in B with segment α.

3e types boolean, byte, char and short are treated as the computational type int by the
Java virtual machine, except for array accesses and explicit conversions [Lindholm and Yellin,
, §..].



. B E

Table . Operand stack and local variables array requirements for several bytecode seg-
ments of the compiled factorial method. e code array offsets are given according to
table . Object references are annotated with types that are inferred by data-flow analysis.
Pop lists are given in reverse order—the topmost value is shown at the right-hand side.
Note that the – fragment does not require a ready :i value, since write precedes read
in this segment. A potential write, marked with ‘?’, is not guaranteed to occur.

Offsets Stack pops Stack pushes Vars read Vars written

– :a/F, :i :i
– i, a/F :i :i
– i i, a/F, i :a/F, :i
– i, i :i
– i :a/F, :i :i?

. Compatible Bytecode Crossover

As discussed in the beginning of the section, compatible bytecode crossover is a
fundamental building block for effective evolution of correct bytecode. In order to
describe the formal requirements for compatible crossover, we need to define the
meaning of variables accesses for a segment of code. at is, a section of code (that
is not necessary linear, since there are branching instructions) can be viewed as
reading and writing some local variables, or as an aggregation of reads and writes
by individual bytecode instructions. However, when a variable is written before
being read, the write “shadows” the read, in the sense that the code executing
prior to the given section does not have to provide a value of the correct type in
the variable.

Variables Access Sets

We define variables access sets, to be used ahead by the compatible crossover op-
erator, as follows: Let a and b be two locations in the same bytecode sequence.
For a set of instructions δa,b that could potentially be executed starting at a and
ending at b, we define the following access sets.

• δra,b: set of local variables such that for each variable v, there exists a potential
execution path (i.e., one not necessarily taken) between a and b, in which v is read
before any write to it; this set of variables is the vars read column in table ;

• δwa,b: set of local variables that are written to through at least one potential
execution path; the corresponding column in table  is vars written;



.. Compatible Bytecode Crossover

• δw!
a,b: set of local variables that are guaranteed to be written to, no matter

which execution path is taken; in table , non-potential writes in the vars written
column correspond to this set.

ese sets of local variables are incrementally computed by analyzing the data
flow between locations a and b. For a single instruction c, the three access sets for
δc are given by the Java bytecode definition. Consider a set of (normally non-
consecutive) instructions {bi} that branch to instruction c or have c as their im-
mediate subsequent instruction. e variables accessed between a and c are com-
puted as follows:

• δra,c is the union of all reads δra,bi
, with the addition of variables read by in-

struction c—unless these variables are guaranteed to be written before c.
Formally, δra,c = (⋃i δ

r
a,bi) ∪ (δrc ⧵ ⋂i δ

w!
a,bi).

• δwa,c is the union of all writes δwa,bi
, with the addition of variables written by

instruction c: δwa,c = (⋃i δ
w
a,bi) ∪ δwc .

• δw!
a,c is the set of variables guaranteed to bewritten before c, with the addition

of variables written by instruction c: δw!
a,c = (⋂i δ

w!
a,bi) ∪ δw!

c (note that δw!
c =

δwc). When δw!
a,c has already been computed, its previous value needs to be a

part of the intersection as well.
We therefore traverse the data-flow graph as shown in fig. , starting at a, and

updating the variables access sets as above, until they stabilize—i.e., stop chang-
ing.⁴ During the traversal, necessary stack depths—such as the number of pops
in table —are also updated. e requirements for compatible bytecode crossover
can now be specified.

Bytecode Constraints on Crossover

In order to attain viable offspring, several conditions must hold when performing
crossover of two bytecode programs. LetA andB be functions in Java, represented
as bytecode sequences. Consider segments α and β in A and B, respectively, and
let pα and pβ be the necessary depth of stack for these segments—i.e, the minimal
number of elements in the stack required to avoid underflow. Segment α can be
replaced with β if the following conditions hold.

. Operand stack (illustrated in fig. ):
(a) it is possible to ensure that pβ ⩽ pα by prefixing stack pops and pushes

of α with some frames from the stack state at the beginning of α;

⁴e data-flow traversal is similar in nature to the data-flow analyzer’s loop in [Lindholm and
Yellin, , §..].



. B E

// Queue initially contains instruction a
Q ← {a}
while Q ≠ ∅ do

// Remove the front of queue
c ← D(Q)
// Sets of locations are initially empty
{bi} ← recorded locations branching to c
compute δ∗

a,c from {δ∗
a,bi

} and δ∗
c

if δ∗
a,c is new or changed then
foreach cj ∈ branch destinations of c do

if ⟨c, cj⟩ ≠ ⟨b, b + ⟩ then
// Insert at end of queue
Q ← E(Q, cj)
record c as location branching to cj

Figure . C-A(a, b): A BFS-like traversal of the data-flow graph starting
at location a and ending at b, in order to compute variables accessed in the code segment
[a, b]. δ∗

x,y denotes the three access sets δrx,y, δwx,y, and δw!
x,y. Here, a branch denotes natu-

ral transitions to subsequent instruction as well as transitions resulting from conditional
and unconditional branching instructions. e inner if clause ensures that a “natural”
transition at the end of segment [a, b] is not unnecessarily followed.

(b) α and β have compatible stack frames up to depth pβ: stack pops of α
have identical or narrower types as stack pops of β, and stack pushes
of β have identical or narrower types as stack pushes of α;

(c) α has compatible stack frames deeper than pβ: stack pops of α have
identical or narrower types as corresponding stack pushes of α.

. Local variables (illustrated in fig. ):
(a) local variables written by β (βw) have identical or narrower types as

corresponding variables that are read aer α (post-αr);
(b) local variables read aer α (post-αr) and not necessarily written by β

(βw!) must be written before α (pre-αw!), or provided as arguments for
call to A, as identical or narrower types;

(c) local variables read by β (βr) must be written before α (pre-αw!), or
provided as arguments for call to A, as identical or narrower types.

. Control flow:
(a) no branch instruction outside of α has branch destination in α, and

no branch instruction in β has branch destination outside of β;
(b) code before α has transition to the first instruction of α, and code in

β has transition to the first instruction aer β;
(c) last instruction in α implies transition to the first instruction aer α.



.. Compatible Bytecode Crossover

Good α β
pre-stack **** ****
post-stack *** ***
depth  

(a) Case (a). Whereas β has necessary stack
depth of  (two pops and one push), α has a
stack depth of  (one pop). However, α has
more stack available, and can be viewed as
having a stack depth of .

Bad α β
pre-stack * ****
post-stack ∅ ***
depth  

(b) Case (a). Here, α cannot be viewed as
having a stack depth of , since the whole
stack depth before α is .

Good α β
pre-stack **AB **AA
post-stack **B **C
depth  

(c) Case (b). Stack pops “AB” ( stack
frames) are narrower than “AA”, whereas
stack push “C” is narrower than “B”.

Bad α β
pre-stack **AB **Af
post-stack **B **A
depth  

(d) Case (b). Stack pops “AB” are not nar-
rower than “Af”, since the object reference
B and the primitive type f are incompatible.
Also, stack push “A” is not narrower than “B”.

Good α β
pre-stack iB** ****
post-stack iA** ****
depth  

(e) Case (c). Stack pops “iB” (extra  stack
frames) are narrower than stack pushes “iA”.

Bad α β
pre-stack *A** ***
post-stack *B** ***
depth  

(f) Case (c). Stack pop “A” (extra  stack
frame) is not narrower than stack push “B”.

Figure . Illustrations to the operand stack requirements in bytecode crossover con-
straints. Here, we assume that class B extends class A, and B is thus a narrower type than A,
and that class C similarly extends class B. e symbols i and f denote the primitive types
int and float. e * symbol is used in cases where the precise type does not matter.
For stacks, the topmost value is shown at the right-hand side. Pre-stack and post-stack are
states of stack before and aer execution of code segment.

Compatible bytecode crossover prevents verification errors in offspring, in
other words, all offspring compile sans error. As with any other evolutionary
method, however, it does not prevent production of non-viable offspring—in our
case, runtime errors. An exception or a timeout can still occur during an individ-
ual’s evaluation, and the fitness of the individual should be reset accordingly.



. B E

Good
βw :i, :C, :*
post-αr :i, :B, :*

(a) Case (a). Variables :i, :C that can be
written by β are narrower than variables :i,
:B that can be read aer α.

Bad
βw :i, :A
post-αr :f, :B

(b) Case (a). Variable :i is not compatible
with :f, and variable :A is not narrower than
:B.

Good
pre-αw! :*, :C, :f
βw! :*, :*
post-αr :* :* :A :f

(c) Case (b). Variables :A, :f that can be
read aer α and are not necessarily written by
β, are certainly written before α as narrower
types :C, :f.

Bad
pre-αw! :f, :A
βw! :*
post-αr :i :* :B :*

(d) Case (b). Variable :f is not compati-
ble with :i, variable :A is not narrower than
:B, and variable  is not necessarily written
either by β or before α.

Good
pre-αw! :i, :C, :*
βr :i, :B

(e) Case (c). Variables :i, :B that can be
read by β, are necessarily written before α as
narrower types :i, :C.

Bad
pre-αw! :i, :C, :*
βr :f, :B, :*

(f) Case (c). Variable :i is not compati-
ble with :f, and variable  is not necessarily
written before α.

Figure . Illustrations to the local variables requirements in bytecode crossover con-
straints. Notation and types used are similar to fig. ; x:y stands for read or write access
to local variable xwith type y. For example, :i in βr means that segment β reads variable
 as an int.



C
Experimental Validation

W  turn to testing the feasibility of bytecode evolution, i.e., we need
to support our hypothesis that evolution of unrestricted bytecode can be

driven by the compatible crossover operator proposed in [Orlov and Sipper, ].
For this purpose we integrated our framework, which uses ASM [Bruneton et al.,
], with the ECJ evolutionary framework [Luke and Panait, ], with ECJ
providing the evolutionary engine. Now we are ready to apply FINCH to a selec-
tion of problems of interest.

Table . Summary of evolutionary runs. Yield is the percentage of runs wherein a suc-
cessful individual was found (where ‘success’ is measured by the success predicate, defined
for each problem in the appropriate section). e number of runs per problem was ,
except for  runs for each tic-tac-toe imperfection.

Section Problem Yield

. Simple symbolic regression %
Complex symbolic regression %

. Artificial ant on Santa Fe trail %
population of   %

population of  ,  generations %
. Intertwined spirals %
. Array sum %

List-based seed individual %
List-recursive seed individual %

. Tic-tac-toe: alpha/save imperfection %
unary “-” imperfection %

false/save imperfection %
alpha-beta imperfection %



. E V

X

X

X X X

EXP

-

% RLOG

-

SIN

RLOG

*

Figure . Tree representation of the worst
generation- individual in the original sim-
ple symbolic regression experiment of Koza
[a]. Functions are represented by inner
tree nodes, and terminals by leaves. e corre-
sponding mathematical expression for x ≠ , 
is e

x
x−sin x

−ln|ln x|, due to protected division and
logarithm operators % and RLOG. ese opera-
tors protect against  in denominators and log-
arithms (RLOG protects against negative argu-
ments as well).

roughout this chapter we describe typical results (namely, Java programs)
produced by our evolutionary runs. e consistency of FINCH’s successful yield
is shown in table , wherein we provide a summary of all runs performed. Table 
shows that the run yield of FINCH, i.e., the fraction of successful runs, is high,
thereby demonstrating both consistency and repeatability. No significant differ-
ence in evolutionary execution time was found between our bytecode evolution
and reported typical times for tree-based GP (most of the runs described herein
took a few minutes on a dual-core .GHz Opteron machine, with the exception
of tic-tac-toe, which took on the order of one hour; note that this latter would
also be quite costly using tree-based GP due to the game playing-based fitness
function [Sipper et al., ]). Of course, increasing population size (see table )
incurred a time increase.

. Symbolic Regression: Simple and Complex

Webeginwith a classic test case inGP—simple symbolic regression [Koza, a]—
where individuals with a single numeric input and output are tested on their abil-
ity to approximate the polynomial x +x +x +x on  random samples. FINCH
needs an existing program to begin with, so we seeded the initial population with
copies of a single individual [Langdon andNordin, , Poli et al., , Schmidt
and Lipson, ]. We selected the worst generation- individual in Koza’s orig-
inal experiment, shown in fig. , and translated it into Java (fig. ).

e worst generation- individual (fig. ) is the Lisp S-expression

(EXP (- (% X (- X (SIN X))) (RLOG (RLOG (* X X))))) ,



.. Symbolic Regression: Simple and Complex

Table . Simple symbolic regression: Parameters. (Note: In the parameter tables shown
throughout this paper we divide the parameters into four categories, separated by bold-
face lines: objective-related, structural, generic, and specific.)

Parameter Koza [a, ch. .] FINCH

Objective symbolic regression: x + x + x + x
Fitness sum of errors on  random data points in [−, ]
Success
predicate

all errors are less than .

Input X (a terminal) Number num

Functions +, -, *, % (protected division),
SIN, COS, EXP, RLOG (protected
log)

built-in arithmetic and Math
functions present in the seed
individual (fig. )

Population  individuals
Generations , or less if ideal individual was found
Probabilities pcross = ., pmut = 
Selection fitness-proportionate binary tournament
Elitism not used

Growth
limit

tree depth of  no limit

Initial pop-
ulation

ramped half-and-half with
maximal depth 

copies of seed program given
in fig. 

Crossover
location

internal nodes with pint = .,
otherwise a terminal

uniform distribution over seg-
ment sizes

where X is the numeric input (a terminal), and {+, -, *, %, SIN, COS, EXP, RLOG}
represents the function set. Whereas the function set includes protected division
and logarithm operators % and RLOG, FINCH needs no protection of functions,
since evaluation of bytecode individuals uses Java’s built-in exception-handling
mechanism. erefore, individuals can be coded in the most straightforward
manner. However, to demonstrate the capability of handling different primitive
and reference types, we added an additional constraint whereby the simpleRe-
gression method accepts and returns a general Number object. Moreover, in or-
der to match the original experiment’s function set, we added extra code that cor-
responds to the + and COS functions. In classical (tree-based) GP, the function and
terminal sets must be sufficient in order to drive the evolutionary process; analo-
gously, in FINCH, the initial (cloned) individualmust contain a sufficientmixture



. E V

class SimpleSymbolicRegression {
Number simpleRegression(Number num) {

double x = num.doubleValue();
double llsq = Math.log(Math.log(x*x));
double dv = x / (x - Math.sin(x));
double worst = Math.exp(dv - llsq);
return Double.valueOf(worst + Math.cos(ɴ));

/* Rest of class omitted */ }}

Figure . Simple symbolic regression in Java. Worst-of-generation individual in gener-
ation  of the x + x + x + x regression experiment of Koza [a], as translated by
us into a Java instance method with primitive and reference types. Since the archetypal
individual (EXP (- (% X (- X (SIN X))) (RLOG (RLOG (* X X))))) does not contain
the complete function set {+, -, *, %, SIN, COS, EXP, RLOG}, we added a smattering of extra
code in the last line, providing analogs of + and COS, and, incidentally, the constant . Pro-
tecting function arguments (enforcement of closure) is unnecessary in FINCH because
evaluation of bytecode individuals uses Java’s built-in exception-handling mechanism.

of primitive components—the bytecode equivalents of function calls, arithmetic
operations, conditional operators, casts, and so forth.

To remain faithful to Koza’s original experiment, we used the same parameters
where possible, as shown in table : a population of  individuals, crossover
probability of ., and nomutation. We used binary tournament selection instead
of fitness-proportionate selection.

We chose bytecode segments randomly using a uniform probability distri-
bution for segment sizes, with up to   retries (a limit reached in extremely
rare cases, the average number of retries typically ranging between –), as dis-
cussed in section ..

An ideal individual was found in nearly every run. Typical evolutionary re-
sults are shown in figs.  and .

Can FINCH be applied to a more complex case of symbolic regression? To
test this we considered the recent work by Tuan-Hao et al. [], where poly-
nomials of the form ∑n

i= xi, up to n = , were evolved using incremental evalu-
ation. Tuan-Hao et al. introduced the DEVTAG evolutionary algorithm, which
employs a multi-stage comparison between individuals to compute fitness. is
fitness evaluation method is based on rewarding individuals that compute partial
solutions of the target polynomial, i.e., polynomials ∑n

i= xi, where n <  (n = 
being the ultimate target polynomial).

To ascertain whether FINCH can tackle such an example of complex symbolic
regression, we adapted our above evolutionary regression setup by introducing



.. Symbolic Regression: Simple and Complex

class SimpleSymbolicRegression_ɱ_ɺɴɼɼ {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = num.doubleValue();
double dɴ = d; d = Double.valueOf(d + d *
d * num.doubleValue()).doubleValue();

return Double.valueOf(d + (d =
num.doubleValue()) * num.doubleValue());

/* Rest of class unchanged */ }}

Figure . Decompiled contents of method simpleRegression that evolved aer  gen-
erations from the Java program in fig. . It is interesting to observe that because the
evolved bytecode does not adhere to the implicit rules by which typical Java compilers
generate code, the decompiled result is slightly incorrect: the assignment to variable d
in the return statement occurs aer it is pushed onto the stack. is is a quirk of the
decompiler—the evolved bytecode is perfectly correct and functional. e computation
thus proceeds as (x + x ⋅ x ⋅ x) + (x + x ⋅ x ⋅ x) ⋅ x, where x is the method’s input.

class SimpleSymbolicRegression_ɱ_ɵɺɵɱ {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = d; d = d;
double dɴ = Math.exp(d - d);
return Double.valueOf(num.doubleValue() *
(num.doubleValue() *

(d * d + d) + d) + d);
/* Rest of class unchanged */ }}

Figure . Decompiled contents of method simpleRegression that evolved aer  gen-
erations in another experiment. Here, the evolutionary result is more straightforward,
and the computation proceeds as x ⋅ (x ⋅ (x ⋅ x + x) + x) + x, where x is the method’s
input. (Note: Both here and in fig. , the name of the num parameter produced by the
decompiler was different—and manually corrected by us—since we do not preserve de-
bugging information during bytecode evolution; in principle, this adjustment could be
done automatically.)

a fitness function in the spirit of Tuan-Hao et al. [], based on the highest
degree n computed by an evolving individual.

We ranFINCHwith clones of the sameworst-case simpleRegressionmethod
used previously (fig. ) serving as the initial population. e evolutionary pa-
rameters are shown in table : a population of  individuals, crossover proba-
bility of ., and no mutation. We used tournament selection with tournament
size . Fitness was defined as the degree n computed by simpleRegression (or
zero if no such n exists) plus the inverse of the evolved method size (the latter is



. E V

Table . Complex symbolic regression: Parameters.

Parameter Tuan-Hao et al. [] FINCH

Objective symbolic regression: x + x + ⋯ + x + x
Fitness sum of errors on  ran-

dom samples in [−, ], multi-
stage incremental evaluation
of polynomials ∑n

i= xi in DE-
VTAG

degree n of polynomial ∑n
i= xi

for which errors on all  ran-
dom samples in [−, ] are <
− + inverse of method size

Success
predicate

all errors are less than . n = 

Terminals X, . Number num (an input)
Functions +, -, *, /, SIN, COS, LOG, EXP

(/ and LOGmay return Inf and
NaN)

built-in arithmetic and Math
functions present in the seed
individual (fig. )

Population  individuals  individuals
Generations unspecified (MAXGEN) , or less if ideal individual

was found
Probabilities pcross = ., pmut = . pcross = ., pmut = 
Selection tournament of size  tournament of size 
Elitism not used

Growth
limit

tree depth of  maximal growth factor .

Initial pop-
ulation

random individuals with ini-
tial size  ∼ 

copies of seed program given
in fig. 

Crossover
location

sub-tree crossover and sub-
tree mutations

Gaussian distribution over
segment sizes with σ =
method size

a minor component we added herein to provide lexicographic parsimony pres-
sure [Luke and Panait, ] for preferring smaller methods). e degree n is
computed as follows:  random input samples in [−, ] are generated, and the
individual (method) computes all  outputs; if all  are within a − distance
of a degree-n polynomial’s outputs over these sample points, then n is the highest
degree, otherwise this fitness component is zero.

Bytecode segments were chosen randomly before checking them for crossover
compatibility, with preference for smaller segments: we used |(, n/)| as the
distribution for segment sizes, where n is the number of instructions in the sim-



.. Artificial Ant

Number simpleRegression(Number num) {
double d = num.doubleValue();
return Double.valueOf(d + (d * (d * (d +

((d = num.doubleValue()) +
(((num.doubleValue() * (d = d) + d) *

d + d) * d + d) * d)
* d) + d) + d) * d);

}

Figure . Decompiled contents of method simpleRegression that evolved aer  gen-
erations in the complex symbolic regression experiment. e evolutionary result pro-
ceeds as x + (x ⋅ (x ⋅ (x + (x + (((x ⋅ x + x) ⋅ x + x) ⋅ x + x) ⋅ x) ⋅ x) + x) + x) ⋅ x, where x
is the method’s input, which is computationally equivalent to x + ⋯ + x + x. Observe
the lack of unnecessary code due to parsimony pressure during evolution. Note that the
regression problem tackled herein is not actually “simple”—we just used the same initial
method as in the simple symbolic regression experiment.

pleRegression method of a given individual, and (μ, σ) is the Gaussian dis-
tribution specified by given mean and standard deviation. Finally, a maximal
growth factor of . was specified, to limit the evolved method to a multiple of
the original worst-case simpleRegression method (i.e., a limit of  times the
number of bytecode instructions in the initial method).

An ideal individual was found in every run. A typical evolved method is
shown (without thewrapper class) in fig. . As a side issue, we also testedwhether
straightforward, non-incremental fitness evaluation can be used—a test which
proved successful: We were able to evolve degree- polynomials directly, using
a simple initial-population individual consisting only of instructions computing
(x + x) ⋅ x.

. Artificial Ant

e artificial ant problem is a popular learning problem, where the objective is for
an artificial ant to navigate along an irregular trail that contains  food pellets
(the trail is known as the Santa Fe trail). Here we consider Koza’s well-known
experiment [Koza, a], where Lisp trees with simple terminal and function
sets were evolved. e terminal set contained a MOVE operation that moves the
ant in the direction it currently faces (possibly consuming the food pellet at the
new location), and LEFT and RIGHT operations that rotate the ant by °. e
function set consisted of PROGNɵ and PROGNɶ, for - and -sequence operations,
respectively, and the IF-FOOD-AHEAD test that checks the cell directly ahead of the



. E V

(a) e Santa Fe trail. e ant starts at the
upper-le corner facing right, its objective
being to consume  food pellets.

(b) Path taken by the Avoider individual,
shown in fig. , around the food pellets that
are marked by colored cells.

Figure . e Santa Fe food trail for the artificial ant problem, and the correspond-
ing path taken by the randomly-generated Avoider individual in the experiment by Koza
[a]. Note that the grid is toroidal.

RIGHT

RIGHT

MOVE LEFT

IF-FOOD-AHEAD

IF-FOOD-AHEAD

PROGN2

(a) Tree representation of the Lisp individual.

void step() {
if (foodAhead())

right();
else if (foodAhead())

right();
else {

move(); left();
}

}

(b) Implementation in Java. See section A.
for class context.

Figure . e Avoider individual in the original experiment of Koza [a, ch. .]
is given by the S-expression (IF-FOOD-AHEAD (RIGHT) (IF-FOOD-AHEAD (RIGHT)
(PROGNɵ (MOVE) (LEFT)))). (a) Original Lisp individual. (b) Translation into Java.

ant and executes its then and else branches according to whether the cell contains
a food pellet or not. e Santa Fe trail is shown in fig. (a), where the ant starts
at the upper-le corner and faces right.

Koza reported that in one experiment the initial population contained a pe-
culiar randomly generated Avoider individual that actively eschewed food pellets,
as shown in fig. (b). We chose this zero-fitness individual for our initial popula-
tion, implementingAvoider as a straightforward and unconstrained Java function



.. Artificial Ant

Table . Artificial ant: Parameters.

Parameter Koza [a, ch. .] FINCH

Objective single step function for artificial ant that moves and
eats food pellets on Santa Fe trail (fig. (a))

Fitness food pellets consumed up to
limit of  moves (probably
any move is counted)

food pellets consumed up to
limit of  non-eating moves
+ inverse of step method size

Success
predicate

the ant consumed all  food pellets

Terminals LEFT, RIGHT, MOVE N/A
Functions IF-FOOD-AHEAD, PROGNɵ (se-

quence of ), PROGNɶ (se-
quence of )

built-in control flow and the
functions present in the seed
individual (fig. (b))

Population  individuals
Generations , or less if ideal individual was found
Probabilities pcross = ., pmut = 
Selection fitness-proportionate tournament of size 
Elitism not used  individuals

Growth
limit

tree depth of  maximal growth factor .

Initial pop-
ulation

ramped half-and-half with
maximal depth 

copies of seed program given
in fig. (b)

Crossover
location

internal nodes with pint = .,
otherwise a terminal

Gaussian distribution over
segment sizes with σ =
method size

called step, as shown in fig.  (along with the original Lisp-tree representation).
e complete artificial ant implementation is listed in section A..

During implementation of the artificial ant problem in FINCH, we were faced
with some design choices that were not evident in the original experiment’s de-
scription. One of them is a limit on the number of operations, in order to prevent
evolution of randomly moving ants that cover the grid without using any logic.
Koza reported using a limit of  operations, where each RIGHT, LEFT, and MOVE

counts as an operation. However, an optimal ant would still take  operations
to consume all  food pellets. erefore, we opted for a limit of  non-eating
moves instead, the necessary minimum being .



. E V

void step() {
if (foodAhead()) {

move();
right();

}
else {

right();
right();
if (foodAhead())

left();
else {

right();
move();
left();

}
left();
left();

}
}

(a) An optimal individual that ap-
peared in generation . It makes no
unnecessary moves, as can be seen in
the corresponding ant trail in fig. (a).

void step() {
if (foodAhead()) {

move(); move();
left(); right();
right(); left();
right();

} else {
right(); right();
if (foodAhead()) {

move(); right();
right(); move();
move(); right();

} else {
right(); move();
left();

}
left(); left();

}
}

(b) A solution that appeared in generation .
It successfully consumes all the food pellets, but
makes some unnecessary moves, as shown in
fig. (b).

Figure . e step methods of two solutions to the artificial ant problem that were
evolved by FINCH. e corresponding ant trails are shown in fig. .

(a) e trail of the optimal individual shown
in fig. (a).

(b) e trail of the non-optimal (though all-
consuming) individual shown in fig. (b).

Figure . Ant trails that result from executing the artificial ant programs that contain the
evolved step methods shown in fig. .



.. Intertwined Spirals

We ran FINCH with clones of the Java implementation of Avoider (fig. (b))
serving as the initial population. Again, we used the same parameters of Koza
where possible, as shown in table : a population of  individuals, crossover
probability of ., and no mutation. We used tournament selection with tourna-
ment size  instead of fitness-proportionate selection, and elitism of  individuals.
Fitness was defined as the number of food pellets consumed within the limit of
 non-eating moves, plus the inverse of the evolved method size (the former
component is similar to the original experiment, the latter is a minor parsimony
pressure component as in the complex symbolic regression problem). Bytecode
segments were chosen randomly before checking them for crossover compatibil-
ity, with preference for smaller segments, as described previously. Finally, a max-
imal growth factor of . was specified, to limit the evolved method to a multiple
of the original Avoider step method.

Figure  shows two typical, maximal-fitness solutions to the Santa Fe artifi-
cial ant problem, as evolved by FINCH. e corresponding ant trails are shown
in fig. . Table  shows the success rate (i.e., percentage of runs producing all-
consuming individual) for runs using the settings in table , and also the yield af-
ter increasing the population size and removing parsimony pressure (the inverse
step method size component of the fitness function).

. Intertwined Spirals

In the intertwined spirals problem the task is to correctly classify  points on
two spirals, as shown in fig. (a). e points on the first spiral are given in polar
coordinates by

rn =  + n
 , αn =  + n

 ⋅ π ,

for  ⩽ n ⩽ , and the Cartesian coordinates are

x+
n = rn cos αn
y+
n = rn sin αn

,
x−
n = −x+

n

y−
n = −y+

n
,

where (x+
n , y+

n) are points on the first spiral, and (x−
n , y−

n) lie on the second spi-
ral [CMU, ].

A classic machine-learning case study, the intertwined spirals problem was
treated by Koza [a] using the parameters shown in table , with his best-
of-run individual including  conditionals and  constants (shown in fig. ).
Whereas Koza used a slew of ERCs (ephemeral random constants) in the initial



. E V

−1

1
y

−1 1
x

(a) Intertwined spirals, as described by Koza
[a]. e two spirals, containing 
points each, encircle the axes’ origin three
times. e first spiral (filled circles) belongs
to class +, and the second spiral (empty cir-
cles) belongs to class −. e farthest point
on each spiral is at unit distance from the ori-
gin.

(b) Visualization of the solution evolved by
Koza [a] (shown in fig. ), re-created by
running this individual (taking into account
the different scale used byKoza—the farthest
points are at distance . from the origin).
Note the jaggedness of the solution, due to
 conditional nodes in the genotype.

(c) Visualization of the solution in fig. ,
found by FINCH. Points for which the
evolved program returns true are indicated
by a dark background. Aer manual simpli-
fication of the program, we see that it uses
the sign of sin(

π
√x + y−tan− y

x) as the
class predictor of (x, y).

(d) Visualization of another snail-like so-
lution to the intertwined spirals problem,
evolved by FINCH. Note the phenotypic
smoothness of the result, which is also far
terser than the bloated individual that gener-
ated (b), all of which points to our method’s
producing a more general solution.

Figure . e intertwined spirals dataset (a) and the visualizations of two evolved (per-
fect) solutions (c), (d), contrasted with the result produced by Koza (b). Note the smooth-
ness of FINCH’s solutions as compared with the jaggedness of Koza’s.



.. Intertwined Spirals

Table . Intertwined spirals: Parameters.

Parameter Koza [a, ch. .] FINCH

Objective two-class classification of intertwined spirals (fig. (a))
Fitness the number of points that are correctly classified
Success
predicate

all  points are correctly classified

Terminals X, Y, R (ERC in [−, ]) double x, y (inputs)
Functions +, -, *, % (protected divi-

sion), IFLTE (four-argument
if), SIN, COS

built-in control flow and the
functions present in the seed
individual (fig. )

Population   individuals   individuals
Generations , or less if ideal individual

was found
, or less if ideal individual
was found

Probabilities pcross = ., pmut =  pcross = ., pmut = ., Gaus-
sian constants mutation with
σ = 

Selection fitness-proportionate tournament of size 
Elitism not used

Growth
limit

tree depth of  maximal growth factor .

Initial pop-
ulation

ramped half-and-half with
maximal depth 

copies of seed program given
in fig. 

Crossover
location

internal nodes with pint = .,
otherwise a terminal

Gaussian distribution over
segment sizes with σ =
method size

population, FINCH’s initial population is seeded with clones of a single program
(shown in fig. ), containing very few constants. We therefore implementedmu-
tation of constants, as follows: Before an individual is added to the new popula-
tion, each floating-point constant in the bytecode is modified with probability
pmut by adding an (, /) Gaussian-distributed random value.

We seeded the populationwith an individual containing themethod shown in
fig. . In addition to the usual arithmetic functions, we added some trigonomet-
ric functions that seemed to be useful—since a “nice” solution to the intertwined
spirals problem is likely to include a manipulation of polar coordinates of the
points on the two spirals. is assumption proved to be right: Figure  shows a



. E V

(a) Solution in fig. (c) scaled to span the
[−, ] interval on both axes.

(b) Koza’s solution in fig. (b), scaled simi-
larly to (a).

Figure . Solutions smoothness is even more striking when “zooming out,” as shown in
(a) and (b).

boolean isFirst(double x, double y) {
double a = Math.hypot(x, y);
double b = Math.atanɵ(y, x);
double c = -a + b * ɵ;
double d = -b * Math.sin(c) / a;
double e = c - Math.cos(d) - ɴ.ɵɶɷɸ;
boolean res = e >= ɱ;
return res;

}

Figure . e method of the intertwined spirals individual of the initial population. A
return value of true indicates class +. ismethod serves as a repository of components
to be used by evolution: floating-point arithmetic operators, trigonometric functions, and
functions usable in polar-rectangular coordinates conversion—all arbitrarily organized.
Note that the inequality operator translates to a conditional construct in the bytecode.

typical evolved result, visualized in fig. (c). Unlike the jagged pattern of the ex-
tremely precision-sensitive solution evolved by Koza (with slight changes in con-
stants notably degrading performance), we observe a smooth curvature founded
on an elegant mathematical equation. is is likely a result of incremental evolu-
tion that starts with clones of a single individual, and lacks an initial “wild” phase
of crossovers of randomly-generated individuals with different ERCs. In addi-
tion, Koza used a much higher growth limit (see table ), with his best-of-run
comprising  internal nodes. is individual, shown in fig. , can be observed
to be far “quirkier” than solutions evolved by FINCH (e.g., fig. ). Figure (d)



.. Array Sum

boolean isFirst(double x, double y) {
double a, b, c, e;
a = Math.hypot(x, y); e = y;
c = Math.atanɵ(y, b = x) +

-(b = Math.atanɵ(a, -a))
* (c = a + a) * (b + (c = b));

e = -b * Math.sin(c);
if (e < -ɱ.ɱɱɸɹɴɵɹɷɻɺɱɴɻɺɹɵɺɺɵ) {

b = Math.atanɵ(a, -a);
b = Math.atanɵ(a * c + b, x); b = x;
return false;

}
else

return true;
}

Figure . Decompiled contents of method isFirst that evolved aer  generations
from the Java program in fig. . e variable names have been restored—a bit of man-
ual tinkering with an otherwise automatic technique. is method returns true for all
points of class +, and false for all points of class −. is is an “elegant” generalizable
solution, unlike the one reported by Koza [a], where the evolved individual contains
 conditionals and  constants. Note that the only constant here is an approximation to
, and tan− a

−a = 
π, since a is a positive magnitude value.

shows another visualization of an evolved solution, and fig.  presents more in-
tuition with regards to solution quality.

As done by Koza [b], we also retested our ten best-of run individuals on
sample points chosen twice as dense (i.e.,  points), and ten times more dense
( points). For seven individuals,  of the points in both denser versions of
the intertwined spirals problem were correctly classified; for the remaining three
individuals,  of the points were correctly classified on average, for both denser
versions. Koza reported  and  correct classification rates for doubly dense
and tenfold dense versions, respectively, for the single best-of-run individual.
Hence, our solutions exhibit generality as well.

. Array Sum

So far all our programs have consisted of primitive Java functions alongwith a for-
ward jump in the form of a conditional statement. Moving into Turing-complete
territory, we ask in this section whether FINCH can handle two of the most im-



. E V

(sin (iflte (iflte (+ Y Y) (+ X Y) (- X Y) (+ Y Y)) (* X X) (sin (iflte
(% Y Y) (% (sin (sin (% Y ɱ.ɶɱɷɱɱɱɱɵ))) X) (% Y ɱ.ɶɱɷɱɱɱɱɵ) (iflte
(iflte (% (sin (% (% Y (+ X Y)) ɱ.ɶɱɷɱɱɱɱɵ)) (+ X Y)) (% X -ɱ.ɴɱɶɼɼɼɼɺ)
(- X Y) (* (+ -ɱ.ɴɵɷɼɼɼɼɷ -ɱ.ɴɸɼɼɼɼɼɺ) (- X Y))) ɱ.ɶɱɷɱɱɱɱɵ (sin (sin
(iflte (% (sin (% (% Y ɱ.ɶɱɷɱɱɱɱɵ) ɱ.ɶɱɷɱɱɱɱɵ)) (+ X Y)) (% (sin Y) Y)
(sin (sin (sin (% (sin X) (+ -ɱ.ɴɵɷɼɼɼɼɷ -ɱ.ɴɸɼɼɼɼɼɺ))))) (% (+ (+ X Y)
(+ Y Y)) ɱ.ɶɱɷɱɱɱɱɵ)))) (+ (+ X Y) (+ Y Y))))) (sin (iflte (iflte Y (+
X Y) (- X Y) (+ Y Y)) (* X X) (sin (iflte (% Y Y) (% (sin (sin (% Y
ɱ.ɶɱɷɱɱɱɱɵ))) X) (% Y ɱ.ɶɱɷɱɱɱɱɵ) (sin (sin (iflte (iflte (sin (% (sin X)
(+ -ɱ.ɴɵɷɼɼɼɼɷ -ɱ.ɴɸɼɼɼɼɼɺ))) (% X -ɱ.ɴɱɶɼɼɼɼɺ) (- X Y) (+ X Y)) (sin (%
(sin X) (+ -ɱ.ɴɵɷɼɼɼɼɷ -ɱ.ɴɸɼɼɼɼɼɺ))) (sin (sin (% (sin X) (+ -ɱ.ɴɵɷɼɼɼɼɷ
-ɱ.ɴɸɼɼɼɼɼɺ)))) (+ (+ X Y) (+ Y Y))))))) (% Y ɱ.ɶɱɷɱɱɱɱɵ)))))

Figure . e best-of-run S-expression evolved by Koza [a] at generation , vi-
sualized in fig. (b), containing  terminals (where  are constants), and  functions
(where  are conditional operators). is result is extremely sensitive to the exact values
of the constants, the intertwined spirals dataset, and the floating-point precision of the
S-expression evaluator.

int sumlist(int[] list) {
int sum = ɱ;
int size = list.length;
for (int tmp = ɱ; tmp < list.length; tmp++) {

sum = sum - tmp * (list[tmp] / size);
if (sum > size || tmp == list.length + sum)

sum = tmp - list[size/ɵ];
}
return sum;

}

Figure . e evolving method of the seed individual for the array sum problem. Note
that loop variable tmp is assignable, and thus the for loop can “deteriorate” during evo-
lution. e array indexes are not taken modulo list size like in [Withall et al., ]—an
exception is automatically thrown by the JVM in case of an out-of-bounds index use.

portant constructs in programming: loops and recursion. Toward this end we
look into the problem of computing the sum of values of an integer array.

Withall et al. [] recently considered a set of problems described as “more
traditional programming problems than traditional GP problems,” for the pur-
pose of evaluating an improved representation for GP. is representation, which
resembles the one used in grammatical evolution [O’Neill and Ryan, ], main-
tains a genome comprising blocks of integer values, which are mapped to prede-
fined statements and variable references through a given genotype-to-phenotype
translation. e statements typically differentiate between read-only and read-



.. Array Sum

Table . Array Sum: Parameters.

Parameter Withall et al. [] FINCH

Objective summation of numbers in an input array
Fitness negative total of differences

from array sums on  prede-
fined test inputs

as in [Withall et al., ],
+ inverse of sumlist method
size

Success
predicate

the sums calculated for  test inputs and  verification inputs
are correct

Variables sum (read-write), size, tmp,
list[tmp] (read-only, list in-
dex is taken modulo list size)

sum, size, tmp (read-write),
list (read-only array ac-
cesses)

Statements variable assignment, four arithmetical operations, if compar-
ing two variables, for loop over all list elements

Population  individuals  individuals
Generations  , or less if ideal individ-

ual was found
, or less if ideal individual
was found

Probabilities pcross = , pmut = . pcross = ., pmut = 
Selection fitness-proportionate tournament of size 
Elitism  individual

Growth
limit

fixed length maximal growth factor .

Time limit   loop iterations   backward branches
Initial pop-
ulation

randomly-generated integer
vector genomes

copies of seed program given
in fig. 

Crossover
location

uniform crossover between
fixed-length genomes

Gaussian distribution over
segment sizes with σ =
method size

write (assignable) variables—in contrast to FINCH, where a variable that is not
assigned to in the seed individual is automatically “write-protected” during evo-
lution.

Table  shows the evolutionary setups used by Withall et al. [] and by us
for the array sum problem (called sumlist by Withall et al.). During evaluation,
individuals are given  predefined input lists of lengths –, and if a program
correctly computing all the  sums is found, it is also validated on  prede-
fined verification inputs of lengths –. Our initial population was seeded with



. E V

int sumlist(int list[]) {
int sum = ɱ;
int size = list.length;
for (int tmp = ɱ; tmp < list.length; tmp++) {

size = tmp;
sum = sum - (ɱ - list[tmp]);

}
return sum;

}

Figure . Decompiled ideal individual that appeared in generation , correctly sum-
ming up all the test and validation inputs. Variable names were manually restored for
clarity.

int sumlist(List<Integer> list) {
int sum = ɱ;
int size = list.size();
for (int tmp: list) {

sum = sum - tmp * (tmp / size);
if (sum > size || tmp == list.size() + sum)

sum = tmp;
}
return sum;

}

Figure . e evolving method of the seed individual for the List version of the array
sum problem. Note that although the new Java . container iteration syntax is simple to
use, it is translated to sophisticated iteratorsmachinery [Gosling et al., ], as is evident
in the best-of-run result in fig. .

copies of the blatantly unfit Java program in fig. . is program includes a for
statement, for use by evolution, and a loop body that is nowhere near the de-
sired functionality—but merely serves to provide some basic evolutionary com-
ponents. An important new criterion in table —time limit—regards the CPU
resources allocated to a program during its evaluation, a measure discussed in
section ..

FINCHencountered little difficulty in finding solutions to the array sumprob-
lem (see table ). One evolved solution is shown in fig. . FINCH’s ability to
handle this problem gracefully is all the more impressive when one considers the
vastly greater search space in comparison to other systems. For instance, Withall
et al. defined the for statement as an elemental (unbreakable) “chunk” in the
genome, specified only by the read-only iteration variable. In addition, array in-
dexeswere takenmodulo array size. FINCH, however, has no such abstractmodel



.. Array Sum

int sumlist(List list) {
int sum = ɱ;
int size = list.size();
for (Iterator iterator = list.iterator();

iterator.hasNext();) {
int tmp = ((Integer) iterator.next())

.intValue();
tmp = tmp + sum;
if (tmp == list.size() + sum)
sum = tmp;

sum = tmp;
}
return sum;

}

Figure . Decompiled ideal individual that appeared in generation . Variable names
were manually restored for the purpose of clarity, but Java . syntax features (generic
classes, unboxing, and enhanced for) were not restored.

int sumlistrec(List<Integer> list) {
int sum = ɱ;
if (list.isEmpty())

sum *= sumlistrec(list);
else

sum += list.get(ɱ)/ɵ + sumlistrec(
list.subList(ɴ, list.size()));

return sum;
}

Figure . eevolvingmethod of the seed individual for the recursive List version of the
array sum problem. e call to the getmethod returns the first list element, and subList
returns the remainder of the list (the twomethods are known as car and cdr in Lisp). Some
of the obstacles evolutionmust overcome herein are the invalid stop condition that causes
infinite recursion, and a superfluous operation on the first list element.

of the bytecode (nor does it need one!): A for loop is compiled to a set of condi-
tional branches and variables comparisons, and array access via an out-of-bound
index raises an exception.

Of course, FINCH is not limited to dealing with integer arrays—it can easily
handle different list abstractions, such as those that use the types defined in the
powerful Java standard library. Figure  shows the seedmethod used in a slightly
modified array sum class, where the List abstraction is used for a list of numbers.
Solutions evolve just as readily as in the integer array approach—see fig.  for one
such individual.



. E V

int sumlistrec(List list) {
int sum = ɱ;
if (list.isEmpty())

sum = sum;
else

sum += ((Integer)list.get(ɱ)).intValue() +
sumlistrec(list.subList(ɴ,

list.size()));
return sum;

}

Figure . Decompiled ideal individual for the recursive List array sumproblemversion,
which appeared in generation . Java . syntax features were not restored.

Having demonstrated FINCH’s ability to handle loops—we now turn to re-
cursion. Figure  shows the seed individual used to evolve recursive solutions to
the array sum problem. Note that this method enters a state of infinite recursion
upon reaching the end of the list, a situationwhich in noway hinders FINCH, due
to its use of the instruction limit-handling mechanism described in section ..
Solutions evolve readily for the recursive case as well—see fig.  for an example.

. Tic-Tac-Toe

Having shown that FINCH can evolve programmatic solutions to hard problems,
along the way demonstrating the system’s ability to handlemany complex features
of the Java language, we now take a different stance, that of program improvement.
Specifically, we wish to generate an optimal program to play the game of tic-tac-
toe, based on the negamax algorithm.1

Figure  shows the negamax algorithm, a variant of the classic minimax al-
gorithm used to traverse game trees, thus serving as the heart of many programs
for two-player games—such as tic-tac-toe. Whereas in the previous examples
we seeded FINCH with rather “deplorable” seeds, programs whose main pur-
pose was to inject the basic evolutionary ingredients, herein our seed is a highly
functional—yet imperfect program.

We first implemented the negamax algorithm, creating an optimal tic-tac-toe
strategy, i.e., one that never loses. We then seeded FINCH with four imperfect
versions thereof, demonstrating four distinct, plausible, single-error slips that a

1Tic-tac-toe is a simple noughts and crosses game, played on a × grid, where the two players
X (who plays first) and O strive to place three marks in a a horizontal, vertical, or diagonal row.



.. Tic-Tac-Toe

Input : a minimax tree node node, search depth limit d, α-β pruning parameters,
player color c ∈ {, −}

if node is a terminal node ∨ d =  then
return c ⋅ U(node)

else
foreach succ ∈ successors of node do

α ← max(α, −N(succ, d − , −β, −α, −c))
if α ⩾ β then

return α
return α

Figure . N(node, d, α, β, c): an α-β-pruning variant of the classic minimax
algorithm for zero-sum, two-player games, as formulated at the Wikipedia site, wherein
programmers might find it. e initial call for the root minimax tree node is N-
(root, d, −∞, ∞, ). e function U returns a heuristic node value for the
player with color c = .

good human programmer might make. We asked whether FINCH could im-
prove our imperfect programs, namely, evolve the perfect, optimally performing
negamax algorithm, given each one of the four imperfect versions. Our setup is
illustrated in fig. .

Given a good-but-not-perfect tic-tac-toe program, i.e., an imperfect version
of fig. , we set FINCH loose. In their work on evolving tic-tac-toe players,
Angeline and Pollack [] computed fitness by performing a single-elimination
tournament among individuals in the evolving population, demonstrating this
method’s superiority over using “expert” players, in terms of the evolved players’
ability to compete against the optimal player. Table  details the analogous evolu-
tionary setup we used. Note that we used a fixed standard deviation for segment
sizes in order to focus the search on smallmodifications to the evolving programs.

In single-elimination tournament, as applied to our setup, k players are ar-
bitrarily partitioned into k− pairs. Each pair competes for one round and the
winner moves on to the next tournament level—which has k− players. A single
round consists of two games, each player thus given the chance to be X, i.e., to
make the first move. e round winner is determined according to sgn(

m
− 

m
),

where mi is the number of moves player i made to win the game it played as X
(mi is negative if player O won, or ∞ in case of a draw).2 e fitness value of
an individual is simply the number of rounds won, and is in the range {, … , k}.

2e absolute value of mi is actually the number of moves plus , to accommodate the possi-
bility of a win in  moves, as is the case when X fails to make the first move, thus forfeiting (and
losing) the game.



. E V

ɴ int negamaxAB(TicTacToeBoard board,
ɵ int alpha, int beta, boolean save) {
ɶ Position[] free = getFreeCells(board);
ɷ // utility is derived from the number of free cells left
ɸ if (board.getWinner() != null)
ɹ alpha = utility(board, free);
ɺ else if (free.length == ɱ)
ɻ alpha = ɱ;
ɼ else for (Position move: free) {
ɴɱ TicTacToeBoard copy = board.clone();
ɴɴ copy.play(move.row(), move.col(),
ɴɵ copy.getTurn());
ɴɶ int utility = -negamaxAB(copy,
ɴɷ -beta, -alpha, false);
ɴɸ if (utility > alpha) {
ɴɹ alpha = utility;
ɴɺ if (save)
ɴɻ // save the move into a class instance field
ɴɼ chosenMove = move;
ɵɱ if (alpha >= beta)
ɵɴ break;
ɵɵ }
ɵɶ }
ɵɷ return alpha;
ɵɸ }

Figure . FINCH setup for improving imperfect tic-tac-toe strategies. Shown above
is the key Java method in a perfect implementation of the negamax algorithm (fig. )
that a seasoned programmer might write—if she got everything right. However, we con-
sider four possible single-error lapses, or imperfections, as it were, which the programmer
could easily have introduced into the Java code. Here, the utilitymethod computes the
deterministic board value for the player whose turn it is (i.e., the color variable of fig. 
is unnecessary), assigning higher values to boards with more free cells. e negamaxAB
method represents an optimal player that wins (or draws) in as few turns as possible.

Ties are broken randomly. is approach gives preference to players that take less
moves to win.

Table  lists four distinct imperfections an experienced programmer might
have realistically created while implementing the non-trivial negamaxABmethod,
and the impact of these imperfections on the resulting tic-tac-toe player’s perfor-
mance against two of the standard players defined by Angeline and Pollack []:
RAND and BEST. e former plays randomly and the latter is an optimal player,
based on the correct negamax implementation shown in fig.  (so in our case
it also minimizes the number of moves to win or draw). We see that although



.. Tic-Tac-Toe

Table . Tic-tac-toe: Parameters.

Parameter Angeline and Pollack [] FINCH

Objective learn to play tic-tac-toe
Fitness number of rounds won in single-elimination tournament
Success
predicate

not defined same performance against
RAND and BEST as an
optimal player

Terminals pos, … , pos (board posi-
tions)

primitive and object param-
eters, and local variables in
fig. , including the Position
enum

Functions and, or, if (three-argument
if), open, mine, yours (posi-
tion predicates), play-at (po-
sition action)

all the control flow and meth-
ods used in fig. , including
the play tic-tac-toe board in-
stance method

Population  individuals   individuals
Generations  
Probabilities pcross = ., pcompr = . pcross = ., pmut = 

Selection fitness-proportionate, with
linear scaling to  ∼ 

tournament of size 

Elitism not used  individuals

Growth
limit

tree depth of  maximal growth factor .

Time limit not used   back-branches
Initial pop-
ulation

grow with maximal depth  copies of seed program given
in fig. 

Crossover
location

internal nodes with pint = .,
otherwise a terminal

Gaussian distribution over
segment sizes, σ = .

each of the four single-error flaws is minute and subtle at the source-code level
(and therefore likely to be made), the imperfections have a varying (detrimental)
impact on the player’s performance.

Our experiments, summarized in table , show that FINCH easily unrav-
els these unfortunate imperfections in the completely unrestricted, real-world
Java code. e evolved bytecode plays at the level of the BEST optimal player,
never losing to it. Figure  shows one interesting, subtle example of a solu-
tion evolved from the alpha-beta swap imperfect seed (last case of table ).



. E V

Table . Tic-tac-toe: Four different single-error imperfections and their effect on the
resulting player’s performance over a -gamematch. Line numbers refer to the perfect
code of fig. . Performance is shown as percentage of wins, draws, and losses vs. two
players: RAND and BEST. (Note that BEST never loses.)

RAND BEST
Line Single-error imperfection W D L D L

RAND     
BEST     

 put save = false instead of alpha = ɱ     
 remove unary “-” preceding the recursive call

to negamaxAB method
    

 pass save instead of false to the recursive
call

    

 swap alpha and beta in the conditional test     

FINCH discovered this solution by cleverly reusing unrelated code through the
compatible crossover operator: stack pushes of the beta and alpha parameters
for the if_icmplt comparison instructionwere replaced by stack pushes of -beta
and -alpha from the parameters passing section of the recursive negamaxABmethod
call.



.. Tic-Tac-Toe

ɴ int negamaxAB(TicTacToeBoard board,
ɵ int alpha, int beta, boolean save) {
ɶ Position free[] = getFreeCells(board);
ɷ if (board.getWinner() != null)
ɸ alpha = utility(board, free);
ɹ else if (free.length == ɱ)
ɺ alpha = ɱ;
ɻ else {
ɼ Position freeɴ[];

ɴɱ int l = (freeɴ = free).length;
ɴɴ for (int k = ɱ; k < l; k++) {
ɴɵ Position pos = free[k];
ɴɶ TicTacToeBoard copy = board.clone();
ɴɷ copy.play(pos.row(), pos.col(),
ɴɸ copy.getTurn());
ɴɹ int utility = -negamaxAB(copy,
ɴɺ -beta, -alpha, false);
ɴɻ if (utility > alpha) {
ɴɼ alpha = utility;
ɵɱ if (save)
ɵɴ chosenMove = pos;
ɵɵ if (-beta >= -alpha)
ɵɶ break;
ɵɷ }
ɵɸ pos = freeɴ[k];
ɵɹ }
ɵɺ }
ɵɻ return alpha;
ɵɼ }

Figure . Decompiled Java method in a solution evolved from the alpha-beta swap
imperfect seed in table . Compare line  above with line  of fig. . Variable names
were manually restored according to fig.  (Java . for-each loop was not restored).





C
Conclusions

W  a powerful tool by which extant soware, written in the Java
programming language, or in a language that compiles to Java bytecode,

can be evolved directly, without an intermediate genomic representation, and
with no restrictions on the constructs used. We employed compatible crossover, a
fundamental evolutionary operator that produces correct programs by perform-
ing operand stack-, local variables-, and control flow-based compatibility checks
on source and destination bytecode sections.

It is important to keep in mind the scope and limitations of FINCH. No so-
ware development method is a “silver bullet,” and FINCH is no exception to this
rule. Evolving as-is soware still requires a suitably defined fitness function, and
it is quite plausible thatmanual improvementmight achieve better results in some
cases. at being said, we believe that automatic soware evolution will eventu-
ally become an integral part of the soware engineer’s toolbox.

It is also important to distinguish FINCH’s methodology from approaches
aimed at repairing soware [Arcuri, , Forrest et al., ]. Fixing programs
typically relies on coarse-grained edits at the statement level of the abstract syn-
tax tree, and on techniques such as fault localization using delta debugging [Le
Goues, ]. Such approach, although certainly viable, is inherently limited in
its applicability, as it requires precise positive and negative test cases for a certain
bug in order to repair it by exploiting a drastically reduced search space — there
is no evolution of a program as a whole.

We have shown that FINCH is applicable to both evolving “deplorable” first
dras (see sections . to .) and to improving reasonable program dras (see
section .), and in all cases the search space is completely unrestricted, and is
only guided by the goal-driven fitness function. Of course, e.g., agile soware



. C

development methods such as test-driven development can and should be used
with FINCHwhenever possible, but demonstrating viability of suchmethods was
never our goal. Instead, we strove to develop a generic methodology for evolving
soware in unrestricted search space, without relying on support of user-supplied
infrastructure like precise positive and negative inputs, and without limiting the
applicability of the methodology to repairing programs.

A recent study commissioned by the US Department of Defense on the sub-
ject of futuristic ultra-large-scale (ULS) systems that have billions of lines of code
noted, among others, that, “Judiciously used, digital evolution can substantially
augment the cognitive limits of human designers and can find novel (possibly
counterintuitive) solutions to complex ULS system design problems” [Northrop
et al., , p. ]. is study does not detail any actual research performed but
attempts to build a road map for future research. Moreover, it concentrates on
huge, futuristic systems, whereas our aim is at current systems of any size (with
the proof-of-concept described herein focusing on relatively small soware sys-
tems). Differences aside, both our work and this study share the vision of true
soware evolution.

Is good crossover necessary for evolving correct bytecode? Aer all, the JVM
includes a verifier that signals upon instantiation of a problematic class, a con-
dition easily detected. ere are several reasons that good evolutionary opera-
tors are crucial to unrestricted bytecode evolution. One reason is that preclud-
ing bad crossovers avoids synthesizing, loading, and verifying a bad individual.
In measurements we performed, the naive approach (allowing bad crossover) is
at least ten times slower than our unoptimized implementation of compatible
crossover. However, this reason is perhaps the least important. Once we rely
on the JVM verifier to select compatible bytecode segments, we lose all control
over which segments are considered consistent. e built-in verifier is more per-
missive than strictly necessary, and will thus overlook evolutionarily significant
components in given bytecode. Moreover, the evolutionary computation prac-
titioner might want to implement stricter requirements on crossover, or select
alternative segments during compatibility checking—all this is impossible using
the naive verifier-based approach.

Several avenues of future research present themselves, including: (a) defining
a process by which consistent bytecode segments can be found during compatibil-
ity checks, thus improving preservation of evolutionary components during evo-
lution; (b) supporting class-level evolution, such as cross-method crossover and
introduction of new methods; (c) development of mutation operators, currently



lacking (except for the constant mutator of section .); (d) applying FINCH to
additional hard problems, along the way garnering further support for our ap-
proach’s efficacy; (e) directly handling high-level bytecode constructs such as try/-
catch clauses and monitor enter/exit pairs; (f) designing an IDE (integrated de-
velopment environment) plugin to enable the use of FINCH in soware projects
by non-specialists; (g) applying FINCH to meta-evolution, in order to discover
better evolutionary algorithms; (h) applying unrestricted bytecode evolution to
the automatic improvement of existing applications, establishing the relevance of
FINCH to the realm of extant soware.

Progress along these directions can be already seen with automatic evolution
of game heuristics [Orlov et al., ] and development of visualization plug-
ins [Elyasaf et al., ].

It should be noted that the work presented here focused on evolving program
code, and not soware architecture as a whole. We consider it an open ques-
tion whether Darwinian evolution of soware architecture— i.e., introduction of
new classes, new methods, refactoring code, changing inheritance relationships,
modularization, etc. — is as important as evolution of code for achieving the ulti-
mate goal of Darwinian soware engineering, which is still a distant target. Aer
all, soware architecture is mostly intended to assist human soware engineers,
whereas code is executed by a CPU (or, in our case, a JVM). Automatic soware
evolution cannot be done without the latter, but can it avoid the former? Answer-
ing this question requires a major experimental investigation.

Ultimately, one might be able to relax and forget about the Java program-
ming language, concentrating instead on the beverage to be enjoyed, as evolution
blithely works to produce working programs.





AA
Source Listings

A. Artificial Ant: Avoider

Below, we detail the implementation of the Santa Fe artificial ant problem in
Java, aer slight simplifications, such as removing assertions intended for de-
bugging. Avoider, a zero-fitness, generation- individual from the experiment by
Koza [a], was implemented as the step method. Note that this is a standard,
unrestricted Java class, with static and instance fields, an inner class, and a virtual
function override. e compiled bytecode was then provided as-is to FINCH for
the purpose of evolution.

public class ArtificialAnt {

// Exception for exceeding operations limit

public static class OperationsLimit

extends RuntimeException {

public final int ops;

public OperationsLimit(int ops) {

super("Operations limit of " + ops

+ " reached");

this.ops = ops;

}

}

// Map loader, also provides ASCII representation

private static final ArtificialAntMap antMap =

new ArtificialAntMap(ArtificialAntMap.class

.getResource("santafe.trl"));



A. S L

private final int maxOps;

private int opsCount;

private final boolean[][] visitMap;

private int eaten; // pellets counter

private int x, y; // col, row

private int dx, dy; // { -ɺ, ɷ, +ɺ }

public ArtificialAnt(int maxOps) {

this.maxOps = maxOps;

opsCount = ɱ;

boolean[][] model = antMap.foodMap;

visitMap = new boolean[model.length][];

// Initialized to ``false''

for (int row = ɱ; row < visitMap.length;

++row) visitMap[row] =

new boolean[model[row].length];

eaten = ɱ;

x = ɱ; y = ɱ;

dx = ɴ; dy = ɱ;

visit();

}

// Perform as many steps as possible

public void go()

{ while (!ateAll()) step(); }

// Avoider (Koza I, p.ɺɾɺ)

public void step() {

if (foodAhead()) right();

else if (foodAhead()) right();

else { move(); left(); }

}

// Visits current cell

private void visit() {



A.. Artificial Ant: Avoider

if (! visitMap[y][x]) {

visitMap[y][x] = true;

// Don't count eating as a move

if (antMap.foodMap[y][x])

{ ++eaten; --opsCount; }

}

}

// Moves to next cell in current direction

private void move() {

x = (x + dx + antMap.width)

% antMap.width;

y = (y + dy + antMap.height)

% antMap.height;

visit(); operation();

}

// Turns counter-clockwise

private void left() {

if (dy == ɱ) { dy = -dx; dx = ɱ; }

else { dx = dy; dy = ɱ; }

}

// Turns clockwise

private void right() {

if (dy == ɱ) { dy = dx; dx = ɱ; }

else { dx = -dy; dy = ɱ; }

}

private void operation() {

if (++opsCount >= maxOps)

throw new OperationsLimit(opsCount);

}

// Checks whether a food pellet is at next cell

private boolean foodAhead() {

int xx = (x + dx + antMap.width)

% antMap.width;

int yy = (y + dy + antMap.height)



A. S L

% antMap.height;

return antMap.foodMap[yy][xx]

&& !visitMap[yy][xx];

}

// Returns number of eaten food pellets

public int getEatenCount()

{ return eaten; }

// Returns true if all food pellets were eaten

public boolean ateAll()

{ return eaten == antMap.totalFood; }

@Override

public String toString()

{ return antMap.toString(visitMap); }

}



Bibliography

CMUneural network benchmark database, Feb. . URL http://www.cs.cmu.
edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu. 

P. J. Angeline and J. B. Pollack. Competitive environments evolve better solu-
tions for complex tasks. In S. Forrest, editor, Proceedings of the  International
Conference on Genetic Algorithms, July –, , Urbana-Champaign, Illinois,
USA, pages –, San Francisco, CA, USA, July . Morgan Kaufmann.
ISBN ---. , , 

A. Arcuri. Automatic Soware Generation and Improvement rough Search
Based Techniques. PhD thesis, University of Birmingham, Birmingham, UK,
Dec. . URL http://etheses.bham.ac.uk/ɷɱɱ/. , , 

M. F. Brameier and W. Banzhaf. Linear Genetic Programming. Genetic and Evo-
lutionary Computation. Springer, New York, NY, USA, Dec. . ISBN -
---. 

E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to
implement adaptable systems (Un outil de manipulation de code pour la réal-
isation de systèmes adaptables). In Adaptable and Extensible Component Sys-
tems (Systèmes à Composants Adaptables et Extensibles), October –, ,
Grenoble, France, pages –. ACM SIGOPS France, Oct. . URL http:
//asm.objectweb.org/current/asm-eng.pdf. , 

C. Darwin. On the Origin of Species by Means of Natural Selection, or the Preser-
vation of Favoured Races in the Struggle for Life. John Murray, London, .


A. Elyasaf, M. Orlov, and M. Sipper. A heuristiclab evolutionary algo-
rithm for FINCH. In C. Blum, E. Alba, T. Bartz-Beielstein, D. Loiacono,
F. Luna, J. Mehnen, G. Ochoa, M. Preuss, E. Tantar, and L. Vanneschi,
editors, GECCO ’ Companion: Proceeding of the fieenth annual confer-
ence companion on Genetic and evolutionary computation conference compan-
ion, pages –, Amsterdam, e Netherlands, - July . ACM.
doi:doi:./.. 



http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu
http://etheses.bham.ac.uk/400/
http://asm.objectweb.org/current/asm-eng.pdf
http://asm.objectweb.org/current/asm-eng.pdf
http://dx.doi.org/doi:10.1145/2464576.2480786

B

J. Engel. Programming for the Java™ Virtual Machine. Addison-Wesley, Reading,
MA, USA, July . ISBN ---. , 

S. Forrest, W. Weimer, T. Nguyen, and C. Le Goues. A genetic programming
approach to automated soware repair. In G. Raidl et al., editors, Proceedings of
the  Annual Conference on Genetic and Evolutionary Computation, July –,
, Montréal Québec, Canada, pages –, NewYork, NY,USA, July .
ACM Press. ISBN ----. doi:./.. , 

J. Gosling, B. Joy, G. Steele, and G. Bracha. e Java™ Language Specification. e
Java™ Series. Addison-Wesley, Boston,MA,USA, third edition,May . ISBN
---. URL http://java.sun.com/docs/books/jls. , 

B. Harvey, J. Foster, and D. Frincke. Towards byte code genetic programming. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation
Conference, Orlando, Florida, USA, July –, , volume , page , San
Francisco, CA, USA, Oct. . Morgan Kaufmann. ISBN ---. URL
http://www.csds.uidaho.edu/deb/ByteCode.pdf. 

L. Huelsbergen. Fast evolution of custom machine representations. In
D. Corne, Z. Michalewicz, and B. McKay, editors, e  IEEE Congress
on Evolutionary Computation, – September , Edinburgh, Scotland, UK,
volume , pages –. IEEE Press, Sept. . ISBN ---.
doi:./CEC... 

S. Klahold, S. Frank, R. E. Keller, and W. Banzhaf. Exploring the possibilites and
restrictions of genetic programming in Java bytecode. In J. R. Koza, editor, Late
Breaking Papers at the Genetic Programming  Conference, Madison,Wiscon-
sin, USA, July –, , pages –, Madison, WI, USA, July . Omni
Press. 

T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and
D. Cox. Design of the Java HotSpot™ client compiler for Java . ACM
Transactions on Architecture and Code Optimization, ()::–, May .
doi:./.. 

J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. e MIT Press, Cambridge, MA, USA, Dec. a. ISBN
---. xi, , , , , , , , , , , , , , 

J. R. Koza. A genetic approach to the truck backer upper problem and the inter-
twined spiral problem. In IJCNN, International Joint Conference on Neural Net-
works, Baltimore,Maryland, USA, – June , volume , pages –. IEEE
Press, July b. ISBN ---. doi:./IJCNN... 

F. Kühling, K. Wolff, and P. Nordin. A brute-force approach to automatic induc-
tion of machine code on CISC architectures. In J. A. Foster, E. Lutton, J. Miller,
C. Ryan, and A. G. B. Tettamanzi, editors, Genetic Programming:  European



http://dx.doi.org/10.1145/1569901.1570031
http://java.sun.com/docs/books/jls
http://www.csds.uidaho.edu/deb/ByteCode.pdf
http://dx.doi.org/10.1109/CEC.2005.1554672
http://dx.doi.org/10.1145/1369396.1370017
http://dx.doi.org/10.1109/IJCNN.1992.227324

Bibliography

Conference, EuroGP , Kinsale, Ireland, April –, , volume  of Lec-
ture Notes in Computer Science, pages –, Berlin / Heidelberg, Apr. .
Springer-Verlag. ISBN ----. doi:./---_. 

W. B. Langdon and P. Nordin. Seeding genetic programming populations. In
R. Poli, W. Banzhaf, W. B. Langdon, J. Miller, P. Nordin, and T. C. Fogarty,
editors, Genetic Programming: European Conference, EuroGP , Edinburgh,
Scotland, UK, April –, , volume  of Lecture Notes in Computer Sci-
ence, pages –, Berlin / Heidelberg, Apr. . Springer-Verlag. ISBN -
---. doi:./b. 

W. B. Langdon and R. Poli. e halting probability in von Neumann architec-
tures. In P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, edi-
tors, Genetic Programming:  European Conference, EuroGP , Budapest,
Hungary, April –, , volume  of Lecture Notes in Computer Science,
pages –, Berlin / Heidelberg, Apr. . Springer. ISBN ----
. doi:./_. 

C. Le Goues. Automatic Program Repair Using Genetic Programming. PhD thesis,
University of Virginia, Charlottesville, VA,USA,May . URL https://www.
cs.cmu.edu/~clegoues/docs/claire-dissertation.pdf. 

T. Lindholm and F. Yellin. e Java™ Virtual Machine Specification. e Java™
Series. Addison-Wesley, Boston, MA, USA, second edition, Apr. . ISBN
---. URL http://java.sun.com/docs/books/jvms. , , 

S. Luke and L. Panait. Lexicographic parsimony pressure. In W. B. Langdon,
E. Cantú-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. G.
Honavar, G. Rudolph, J.Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.Miller,
E. Burke, and N. Jonoska, editors, Proceedings of the Genetic and Evolutionary
Computation Conference, New York, USA, July –, , pages –, San
Francisco, CA, USA, July . Morgan Kaufmann. ISBN ---. 

S. Luke and L. Panait. A Java-based evolutionary computation research system,
Mar. . URL http://cs.gmu.edu/~eclab/projects/ecj. , 

E. Lukschandl, M. Holmlund, E. Modén, M. Nordahl, and P. Nordin. Induction
of Java bytecode with genetic programming. In J. R. Koza, editor, Late Breaking
Papers at the Genetic Programming  Conference, Madison, Wisconsin, USA,
July –, , pages –, Madison, WI, USA, July . Omni Press. 

E. Lukschandl, H. Borgvall, L. Nohle, M. Nordahl, and P. Nordin. Distributed
Java bytecode genetic programming with telecom applications. In R. Poli,
W. Banzhaf, W. B. Langdon, J. Miller, P. Nordin, and T. C. Fogarty, editors,
Genetic Programming: European Conference, EuroGP , Edinburgh, Scot-
land, UK, April –, , volume  of Lecture Notes in Computer Science,
pages –, Berlin / Heidelberg, Apr. . Springer-Verlag. ISBN --
--. doi:./b. 



http://dx.doi.org/10.1007/3-540-45984-7_28
http://dx.doi.org/10.1007/b75085
http://dx.doi.org/10.1007/11729976_20
https://www.cs.cmu.edu/~clegoues/docs/claire-dissertation.pdf
https://www.cs.cmu.edu/~clegoues/docs/claire-dissertation.pdf
http://java.sun.com/docs/books/jvms
http://cs.gmu.edu/~eclab/projects/ecj
http://dx.doi.org/10.1007/b75085

B

J. Miecznikowski and L. Hendren. Decompiling Java bytecode: Problems, traps
and pitfalls. In R. N. Horspool, editor, Compiler Construction:  International
Conference, CC , Held as Part of the Joint European Conferences on eory
andPractice of Soware, ETAPS , Grenoble, France, April –, , volume
 of Lecture Notes in Computer Science, pages –, Berlin / Heidelberg,
Apr. . Springer-Verlag. ISBN ----. doi:./---
_. 

J. Mizoguchi, H. Hemmi, and K. Shimohara. Production genetic algo-
rithms for automated hardware design through an evolutionary process. In
Z. Michalewicz, J. D. Schaffer, H.-P. Schwefel, D. B. Fogel, and H. Kitano, ed-
itors, Proceedings of the First IEEE Conference on Evolutionary Computation,
ICEC ’, IEEEWorld Congress on Computational Intelligence, June –, ,
Orlando, Florida, USA, volume , pages –. IEEE Neural Networks, June
. ISBN ---. doi:./ICEC... , 

D. J. Montana. Strongly typed genetic programming. Evolutionary Computation,
():–, Summer . doi:./evco..... 

Y. Nakamura, K. Oguri, and A. Nagoya. Synthesis from pure behavioral descrip-
tions. In R. Camposano and W. H. Wolf, editors, High-Level VLSI Synthesis,
pages –. Kluwer, Norwell, MA, USA, May . ISBN ---.
URL http://www-labɱɼ.kuee.kyoto-u.ac.jp/parthenon/NTT. 

P. Nordin. Evolutionary Program Induction of Binary Machine Code and its Appli-
cations. Krehl Verlag, Münster, Germany, . ISBN ---. , 

P. Nordin, W. Banzhaf, and F. D. Francone. Efficient evolution of machine code
for CISC architectures using blocks and homologous crossover. In L. Spector,
W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, editors, Advances in Genetic
Programming, volume , chapter , pages –. e MIT Press, Cambridge,
MA, USA, July . ISBN ---. 

L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff,
R. Kazman, M. Klein, D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-Large-
Scale Systems: e Soware Challenge of the Future. Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, July . ISBN ---. URL http:
//www.sei.cmu.edu/uls. 

M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic Pro-
gramming in an Arbitrary Language, volume  ofGenetic Programming. Kluwer,
Norwell, MA, USA, May . ISBN ---. , 

M.Orlov andM. Sipper. Genetic programming in the wild: Evolving unrestricted
bytecode. In G. Raidl et al., editors, Proceedings of the  Annual Conference
on Genetic and Evolutionary Computation, July –, , Montréal Québec,
Canada, pages –, New York, NY, USA, July . ACM Press. ISBN
----. doi:./.. , , , , , H:



http://dx.doi.org/10.1007/3-540-45937-5_10
http://dx.doi.org/10.1007/3-540-45937-5_10
http://dx.doi.org/10.1109/ICEC.1994.349980
http://dx.doi.org/10.1162/evco.1995.3.2.199
http://www-lab09.kuee.kyoto-u.ac.jp/parthenon/NTT
http://www.sei.cmu.edu/uls
http://www.sei.cmu.edu/uls
http://dx.doi.org/10.1145/1569901.1570042

Bibliography

M. Orlov and M. Sipper. FINCH: A system for evolving Java (bytecode). In R. Ri-
olo, T. McConaghy, and E. Vladislavleva, editors, Genetic Programming eory
and Practice VIII, GPTP-, May –, Ann Arbor, Michigan, USA, volume 
of Genetic and Evolutionary Computation, chapter , pages –. Springer, New
York, Nov. . ISBN ----. doi:./----_. ,
H:

M. Orlov and M. Sipper. Flight of the FINCH through the Java wilder-
ness. IEEE Transactions on Evolutionary Computation, ():–, Apr. .
doi:./TEVC... , H:

M. Orlov, C. Bregman, and M. Sipper. Automatic evolution of Java-written game
heuristics. In M. B. Cohen and M. O. Cinnéide, editors, Search Based So-
ware Engineering: Proceedings of the ird International Symposium, SSBSE
, Szeged, Hungary, September –, , volume  of Lecture Notes in
Computer Science, page , Berlin Heidelberg, sep . Springer-Verlag. ISBN
----. doi:./----_. , , H:

T. Perkis. Stack-based genetic programming. In Z. Michalewicz, J. D. Schaf-
fer, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings of the First
IEEE Conference on Evolutionary Computation, ICEC ’, IEEEWorld Congress
on Computational Intelligence, June –, , Orlando, Florida, USA, vol-
ume , pages –. IEEE Neural Networks, June . ISBN ---.
doi:./ICEC... , 

R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic Programming.
Lulu Enterprises, London, UK, Mar. . ISBN ----. URL
http://www.gp-field-guide.org.uk. (With contributions by J. R. Koza).
, , 

M. D. Schmidt and H. Lipson. Incorporating expert knowledge in evolutionary
search: A study of seeding methods. In G. Raidl et al., editors, Proceedings of
the  Annual Conference on Genetic and Evolutionary Computation, July –
, , Montréal Québec, Canada, pages –, New York, NY, USA, July
. ACM Press. ISBN ----. doi:./.. 

E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest. Automated repair of binary
and assembly programs for cooperating embedded devices. In Proceedings of
the eighteenth international conference on Architectural support for programming
languages and operating systems, ASPLOS , pages –, Houston, Texas,
USA, Mar. - . ACM. doi:doi:./.. URL http://
www.cs.virginia.edu/~weimer/p/schulteɵɱɴɶembedded.pdf. 

F. Servant, D. Robilliard, and C. Fonlupt. JEB: Java evolutionary byte-code —
implementation and tests. In Artificial Evolution,  International Conference,
Evolution Artificielle, EA , Lille, France, October –, , Oct. .
URL http://www-lil.univ-littoral.fr/~robillia/Publis/ɱɸ_jeb.ps.
gz. 



http://dx.doi.org/10.1007/978-1-4419-7747-2_1
http://dx.doi.org/10.1109/TEVC.2010.2052622
http://dx.doi.org/10.1007/978-3-642-23716-4_30
http://dx.doi.org/10.1109/ICEC.1994.350025
http://www.gp-field-guide.org.uk
http://dx.doi.org/10.1145/1569901.1570048
http://dx.doi.org/doi:10.1145/2451116.2451151
http://www.cs.virginia.edu/~weimer/p/schulte2013embedded.pdf
http://www.cs.virginia.edu/~weimer/p/schulte2013embedded.pdf
http://www-lil.univ-littoral.fr/~robillia/Publis/05_jeb.ps.gz
http://www-lil.univ-littoral.fr/~robillia/Publis/05_jeb.ps.gz

B

M. Sipper, Y. Azaria, A. Hauptman, and Y. Shichel. Designing an evolutionary
strategizing machine for game playing and beyond. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, ():–,
July . 

L. Spector and A. Robinson. Genetic programming and autoconstructive evolu-
tion with the Push programming language. Genetic Programming and Evolvable
Machines, ():–, Mar. . doi:./A:. , 

E. B. Tchernev. Forth crossover is not amacromutation? In J. R. Koza,W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg,
H. Iba, andR. Riolo, editors,Genetic Programming : Proceedings of theird
Annual Conference, July –, , Madison, Wisconsin, USA, pages –,
San Francisco, CA, USA, Aug. . Morgan Kaufmann. ISBN ---.
URL http://userpages.umbc.edu/~etcherɴ/gppaper/forcro.htm. 

E. B. Tchernev and D. S. Phatak. Control structures in linear and stack-based
genetic programming. In M. Keijzer, editor, Late Breaking Papers at the 
Genetic and Evolutionary Computation Conference, June –, , Seattle,
Washington, USA. Distributed on CD-ROM at GECCO-, June . URL
http://www.cs.bham.ac.uk/~wbl/biblio/geccoɵɱɱɷ/LBPɱɷɴ.pdf. 

H. Tuan-Hao, R. I. B. McKay, D. Essam, and N. X. Hoai. Solving symbolic re-
gression problems using incremental evaluation in genetic programming. In
IEEE Congress on Evolutionary Computation, CEC , Vancouver, British
Columbia, Canada, July –, , pages –. IEEE Press, July .
ISBN ---. doi:./CEC... , , 

D. R. White, A. Arcuri, and J. A. Clark. Evolutionary improvement of programs.
IEEE Transactions on Evolutionary Computation, ():–, Aug. . ISSN
-X. doi:doi:./TEVC... 

M. S.Withall, C. J. Hinde, and R. G. Stone. An improved representation for evolv-
ing programs. Genetic Programming and Evolvable Machines, ():–, Mar.
. doi:./s---. , , 

M. L. Wong and K. S. Leung. Data Mining Using Grammar Based Genetic Pro-
gramming and Applications, volume  of Genetic Programming. Kluwer, Nor-
well, MA, USA, Feb. . ISBN ----. doi:./b. 

J. R. Woodward. Evolving Turing complete representations. In R. Sarker,
R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, ed-
itors, e  Congress on Evolutionary Computation, CEC , Canberra,
Australia, – December, , volume , pages –. IEEE Press, Dec. .
ISBN ---. doi:./CEC... 



http://dx.doi.org/10.1023/A:1014538503543
http://userpages.umbc.edu/~etcher1/gppaper/forcro.htm
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/LBP041.pdf
http://dx.doi.org/10.1109/CEC.2006.1688570
http://dx.doi.org/doi:10.1109/TEVC.2010.2083669
http://dx.doi.org/10.1007/s10710-008-9069-7
http://dx.doi.org/10.1007/b116131
http://dx.doi.org/10.1109/CEC.2003.1299753

Index

A
AIM-GP, 
array sum, 
artificial ant, 

Santa Fe trail, 

B
BNF, 
bug fixing, see soware repair
bytecode, 

correctness, 
decompilation, 
evolution, 
instrumentation, 
optimization, 
requirements, 

C
compiler optimization, 

D
DEVTAG, 
DJBGP, 

E
ECJ, , 
extant soware, 

F
factorial, 
FINCH, , 

compatible crossover, , 
forward control flow, , 
looping constructs, 

recursion, 
Forth, 

G
genetic programming, 

linear GP, 
Stack GP, 
tree GP, 

grammatical evolution, , , 

I
incremental evaluation, 
intertwined spirals, 

J
JAFF, 
JBGP, 
JEB, 
just-in-time compilation, , 
JVM, , 

languages, 
soware lifecycle, 
verification, 

M
machine code evolution, , 
mutation, 

P
Push, 

R
representation, , 



I

S
soware improvement, 
soware repair, , 
symbolic regression, 

complex symbolic regression, 

T
termination, 
tic-tac-toe, 

Y
yield, 



Glossary

BNF Backus-Naur Form. 

CFG Context-Free Grammar. 

GP Genetic Programming. 

JVM Java Virtual Machine. , 





דארוויניסטית תוכנה הנדסת

הדרישות של חלקי מילוי לשם מחקר
תואר לקבלת

לפילוסופיה דוקטור

מאת

אורלוב מיכאל

לסינאט הוגש

תשע״ד תשרי  ספטמבר

באר־שבע

דארוויניסטית תוכנה הנדסת

הדרישות של חלקי מילוי לשם מחקר
תואר לקבלת

לפילוסופיה דוקטור

מאת

אורלוב מיכאל

לסינאט הוגש

המנחה אישור

ללימודי הספר בית דיקן אישור
קרייטמן ע״ש מתקדמים מחקר

תשע״ד תשרי  ספטמבר

באר־שבע

הנדסת תוכנה דארוויניסטית

זיפר משה פרופ׳ בהדרכת נעשתה העבודה
המחשב למדעי במחלקה
הטבע למדעי בפקולטה

:iv

תקציר

של אבולוציה המאפשרת ,Java של בייטקוד של לאבולוציה מתודולוגיה ,FINCH את מציגה זאת תזה
.Java של לבייטקוד מקומפלות אשר אחרות בשפות תוכניות או מוגבלות, ולא קיימות Java תוכניות
מתודולוגיה כיצד שלנו האופטימיסטית הראיה את משקף דארוויניסטית“, תוכנה ”הנדסת התזה, שם

תוכנה. הנדסת בתחום אבולוציוני מחשוב של יישום על להשפיע יכולה זאת
פריטים של והערכה הרכבה בחירה, של המפתח תכונות את דורשת אבולוציוני מחשוב מערכת
הכתובות תוכניות על אלו תכונות ליישם מנסים שאנו ברגע ביותר, המורכבת התכונה דורות. גבי על
תואמת, הכלאה של המושג על מבוססת שלנו הגישה (רקומבינציה). הרכבה היא וכללית, קיימת בשפה
וזרימת מקומיים, משתנים מחסנית, מבוססות אופרנדים בדיקות ביצוע ע”י תקינות תוכניות המייצרת

ויעד. מקור בייטקוד קטעי על בקרה
אנו העבודה, בתחילת ייחודית. הינה קיימת תוכנה של לאבולוציה הזאת הגישה לנו, שידוע כמה עד
Java של הבייטקוד פקודות מאוסף מצומצם בחלק המשתמשות קיימות עבודות מול גישתנו את משווים

גנטי. בתכנות פריטים עבור ייצוג שפת בתור
הכלאה המשיגים באלגוריתמים התמקדות עם ,FINCH של מימוש מתארים אנחנו מכן, לאחר
מטופלים כיצד ומתארים חילופיים, מימושים של בהתכנות דנים אנו תקינים. פריטים יצירת עבור תואמת

אי-עצירה. כגון מכשולים
כולל בעיות, של אוסף בפתרון FINCH של המסחררת ההצלחה את ממחישים אנו כן, אחרי
FINCH דריקס. מיקס ואיקס מערך, סכום תמונה, סיווג מסלול, ניווט ומורכבת, פשוטה רגרסיה
של בצורה פתרונות לייצר מנת על שלה הטיפוסים ומערכת JVM ארכיטקטורת עושר את מנצלת

אדם. לבני המובנות Java תוכניות
באוסף ערך ורב חדש לכלי תוביל אבולוציונית בצורה Java תוכניות לפתח שהיכולת מקווים אנו

תוכנה. מהנדסי של הכלים
ב- בעבר פורסמה כאן המתוארת העבודה

.[Orlov and Sipper, 2009, 2010, 2011, Orlov et al., 2011]

:

תקציר

נושא ומתארי קטגוריות

תוכנית; שינוי תוכנית, של אוטומטי—טרנספורמציה תכנות מלאכותית]: [בינה I.2.2
עיצוב.1 ושיטות כלים תוכנה]: [הנדסת D.2.2 שפה; של ותכונות מבנים תכנות]: [שפות D.3.3

מפתח מילות

ג׳אווה. של בייטקוד אבולוציוני, חישוב גנטי, תכנות תוכנה, של אבולוציה

http://www.acm.org/about/class/ɴɼɼɻ :ACM Computing של הסיווג מערכת 1לפי

:

http://www.acm.org/about/class/1998

	Title
	Declaration
	Acknowledgments
	Contents
	List of Figures
	List of Tables

	Abstract
	1 Introduction
	2 Related Work
	3 Bytecode Evolution
	3.1 Why Target Bytecode for Evolution?
	3.2 The Grammar Alternative
	3.3 The Halting Issue
	3.4 (No) Loss of Compiler Optimization
	3.5 Bytecode Evolution Principles
	3.6 Compatible Bytecode Crossover

	4 Experimental Validation
	4.1 Symbolic Regression: Simple and Complex
	4.2 Artificial Ant
	4.3 Intertwined Spirals
	4.4 Array Sum
	4.5 Tic-Tac-Toe

	5 Conclusions
	A Source Listings
	A.1 Artificial Ant: Avoider

	Bibliography
	Index
	Glossary
	Hebrew Title (כותרת)
	Hebrew Abstract (תקציר)

